Functional Specification

ROM Data Sources & Sets

BIRT Report Object Model – Data Sources and Data Sets

Functional Specification
Version 1: May 27, 2005

Abstract

Describes the data source and data set elements in the BIRT Report Object Model.

Document Revisions

	Draft
	Date
	Description of Changes

	Version 1
	5/27/2005
	First BIRT release.

Contents

31. Introduction

31.1 Understanding the Data Access and Transformation Architecture

51.2 Data-Access and Report-Related Data Attributes

51.2.1 Data Access Attributes

51.2.2 Report-related Data Attributes

61.3 Data access attributes

61.3.1 Essential attributes

61.3.2 Derived attributes

71.3.3 UI hint attributes

71.4 Open Data Access extensions

72. Data Source

72.1 Life Cycle

83. Data Set

83.1 Data Set Consumers

83.1.1 Set-Based Report Elements

83.1.2 Simple Report Elements

93.2 Life Cycle

93.3 Result Set Columns

103.3.1 Column Names

103.3.2 Anonymous Result Sets

103.4 Data Set Parameters and Parameter Bindings

113.4.1 Parameter Definitions

113.4.2 Binding Input Parameters

113.4.3 Accessing Output Parameters

124. Scripted Data Set

124.1 Result Set Definition

124.1.1 Static Result Set Definition

124.1.2 Scripted Result Set Definition

134.1.3 Selecting the Definition Method

134.1.4 Computed Columns

134.1.5 Filters

134.2 Input and Output Parameters

135. Structure-Driven Data Transform Definition

135.1 Filtering

145.2 Grouping

145.3 Sorting

145.4 Aggregates

155.5 Computed Columns

1. Introduction

A report presents data, and that data may come from one of many different data sources: JDBC, Java objects, and more. This specification explains the process of getting data into the report and ready for use by the report structure.

ROM defines a number of data management concepts:

· Data Source: A connection to an external data system such as a RDBMS, application data source, etc.

· Data Set: An element that provides a tabular result set to the report.

· Data Row: The result set contains a set of data rows. Each data row contains a set of columns.

· Result Set: The set of rows returned from a data set at execution time.

· Data Transforms: The report can request data transforms such as sorting, grouping, aggregations and more.

Of the above, the report design file explicitly defines the data source and data set. The data row is often defined implicitly, but some data sets may require an explicit definition. Data transforms are defined implicitly through properties on lists, tables, charts and other report elements.

BIRT encourages third parties to create data access extensions that provide access to many different kinds of data. The data access extensions are in the form of BIRT Open Data Access (ODA) interfaces. BIRT provides a uniform view of all data sources and data sets within a report design. This specification discusses the attributes common to all data sources and data sets, and those unique to open data access extensions.

1.1 Understanding the Data Access and Transformation Architecture

The following diagram is helpful to understand the various system components involved in the data access and transformation portion of BIRT. The following is a reference architecture; it is not intended to constrain implementation.

The report design specifies the kind of data access and data transforms required as explained in this specification. The Factory implements the report instructions using the Data Engine (DtE). The DtE performs data access tasks and report-specific tasks such as aggregates, filters and so on.

All data comes from some external system called a data provider. A common data provider is a relational database accessed through JDBC. However, BIRT allows access to a wide range of data providers. (The term “data source” is often used as another term for data provider, but the formal definition of data source is a connection to a data provider.)

Data providers are made accessible to BIRT through a driver implemented using the BIRT ODA framework. ODA defines a set of run-time and design-time protocols that allow a developer to create an ODA driver that acts as a bridge between the data provider and BIRT.

BIRT includes a JDBC ODA driver. It provides both a GUI designer tool and a runtime driver. BIRT also includes a flat file data source ODA driver. It serves as a simple code example for an ODA runtime driver. The BIRT community is encouraged to implement additional ODA drivers for their specific data providers.

The Data Engine’s data access layer is a consumer of ODA data providers. It manages ODA drivers and handles the tasks of loading drivers, opening connections, managing data requests, and so forth.

As was mentioned above, the report can request data transforms such as sorting. The DtE component ensures that the transforms are done. However, many data providers can implement certain transforms, and it is normally more efficient to push transforms into the data provider when possible. The DtE data access layer and driver participate in a negotiation to determine what can be pushed, and what must be performed within BIRT itself. This negotiation process is transparent to the report developer who simply states what is wanted; BIRT ensures that the operation is done the correct way for any given driver and data provider.

BIRT allows the report designer to define a data set using script methods embedded in a report design file. In this case, the script, instead of a driver that implements the ODA interfaces, performs data access. However, conceptually, the scripted data source fits into the above architecture with the script acting as the driver. The script can access a file directly, or can interface with a Java implementation that plays the role of a data provider. The scripted data access approach provides most flexibility but it does not utilize any of the capabilities built in the ODA framework.

1.2 Data-Access and Report-Related Data Attributes

BIRT categorizes data-related information into two broad types: data-access attributes and report-related data attributes.

1.2.1 Data Access Attributes

Data-access attributes provide the information needed to work with an external provider. For example, a JDBC connection needs an URL, user name, password and so on. Its data set query requires a SQL statement. These attributes are specific to each data provider and are defined by the driver for that provider.

1.2.2 Report-related Data Attributes

Report-related data attributes describe how to use the data within the report. For example, reports provide many specialized properties to assist with report searching, data extraction, report structure, and so forth. This information is often independent of the underlying data provider. Report-related data attributes describe how to use the information within a particular report.

Report-related data attributes are further divided into those defined on a data set and those defined within the report structure.

1.2.2.1 Data-Set report-related attributes

Those attributes defined on a data set most often relate to searching and data extraction features. Data set attributes also help to map the data into a form more readily usable by the report. Data set attributes provide such things as column aliases and additional data computed from input columns.

Data set attributes are universal; they apply to all data sets independent of the underlying data provider. These attributes can compensate for limitations of the data provider by providing column names, computing needed values, and performing filtering, and so forth.

Data set attributes also help integrate a data provider into the report. One example is when a report needs to provide a column that is computed using scripts or Java code unique to that report. In this case, the computed column is defined within the report instead of using the features of the data provider.

1.2.2.2 Report structure data attributes

Much of the data transformation requests come from the report structure itself. These include sorting, grouping, filtering, aggregates (totals) and more. See the Structure-driven Data Transform Definition section for more information on this type of attribute.

1.3 Data access attributes

Data access attributes can be further divided into three subcategories: essential, derived and UI hint. Furthermore, derived attributes may be cached. In this section, the word attribute is meant as a generic term that describes all the types of data passed to and from the underlying data provider. The distinction between essential and derived data differs between each type of data set and data source. Some data sources require a lot of essential attributes, while others can derive much of their attributes.

1.3.1 Essential attributes

Essential attributes are those entered by the user. Essential attributes must be retained from one edit session to the next. If essential attributes were to be discarded, then the user would have to re-enter it each time.

For example, a JDBC data provider may not be able to provide a query parameter’s data type meta-data. But it expects to receive a properly typed input value for the parameter to execute the query. To compensate for this limitation, the user must specify the correct data type of the input parameter in the data set definition.

1.3.2 Derived attributes

Derived attributes are those provided by the underlying data provider. Typical derived attributes are the meta-data of a data access query. For example, for a relational database, the user may provide a SQL statement but the database provides a description of the result set retrieved by the SQL statement.

Derived attributes can be requested from the data source when needed.

Not all data sources are designed to separate the essential and derived attributes; some combine them into a single data set definition. BIRT supports both models.

1.3.2.1 Cached attributes and attribute reconciliation

Some data providers require that the application cache derived attributes. For example, perhaps a particular data provider can determine the result set schema only in the UI designer tool, but not at Factory report generation time. In this case, the result set definition must be cached in the BIRT report design file and used to interact with the underlying data provider.

When caching occurs, a reconciliation step is required to update the cached information when the underlying data source changes. Reconciliation is easy if derived information is separated from essential information: simply discard the old derived information and obtain a new set. However, reconciliation becomes a manual process when essential and derived attributes are intermixed: the software cannot determine which information the user entered (and so the user must correct) and which was derived (and can be silently refreshed). The result is often that the user must review all changes in both essential and derived data.

Caching derived attributes minimizes the frequency needed to establish a live connection with the underlying data source, and could thus provide significant performance benefit for some data sources during the report design time. Data providers are strongly recommended to clearly separate the essential attributes from the derived ones, and provide the ability to reconcile derived information.

1.3.3 UI hint attributes

Some ODA Designer UI components may include its designer information as part of their data source definition. BIRT defines such driver design state attributes as a special form of private cached attributes. Other examples of Designer UI hint attributes are meta-data such as display name and suggested format (these specific attributes are not included in the 1.0 release).

The UI must function correctly even if these designer hints are not present. To ensure that BIRT can correctly categorize a property as essential or as a UI hint, a data provider’s designer should clearly separate the UI hints from the essential attributes.

1.4 Open Data Access extensions

The BIRT Data Engine component supports the Open Data Access (ODA) extension framework. It provides the capability to plug any external data source, such as web logs and other application data sources, into the BIRT reporting engine.

BIRT data extension defines a set of ODA design-time and run-time protocols. It adopts the Eclipse plug-in framework for one to provide a designer tool, and a runtime driver for data retrieval during report generation.

The Eclipse plug-in for BIRT data extension allows one to provide a GUI designer tool specific to an external data source. The plug-in designer tool would then use the BIRT public API to specify the data set and data source definitions, which will be saved in the report design file.

BIRT Data Engine would then use that data definition in the report design and access a data extension's ODA runtime driver for query execution and data retrieval. The ODA runtime interfaces are JDBC-like, but have been extended to support additional capabilities of non-RDBMS data sources. An ODA driver would basically implement the public runtime interfaces, which would in turn wrap data-source-specific APIs, such as web services, to retrieve a result set’s data rows.

See the BIRT ODA Public Interfaces specification and the ODA Runtime API Package’s Javadoc References for detail description. The BIRT community is encouraged to implement the ODA extension framework for its specific types of data sources.

2. Data Source

The ROM data source element manages a connection to an external data system. A typical connection is a connection to a database via JDBC or to an application data source.

2.1 Life Cycle

BIRT automatically manages data sources. BIRT detects the first use of a data source and opens the data source automatically at that time. The data source remains open as long as at least one data set uses the data source. BIRT caches data sources and may keep the data source open even when no data sets are using it in anticipation of future use of the data source.

BIRT can use the scripts listed below to execute code on the two primary data source events: open and close.

3. Data Set

A data set is a named element that provides a result set defined by a sequence of data rows. Report elements use data sets to retrieve data for display.

A data set has three key parts:

· Data access: Instructions for retrieving data from an external data provider. For example, a SQL query, a stored procedure definition, an application program command, associated input and/or output parameters, and so on.

· Report-specific properties: Properties for how the data is to be used in the report such as rules for searching, data export and so on.

· Data transforms: Rules for processing the data for use by the report. Data transforms are most frequently defined by report items that use the data set, and are applied to the result set by BIRT.

Data transforms that can be defined on a data set include:

· Column projections.

· Filters.

· Computed columns.

Sorting, grouping, aggregations and similar transforms are defined in the report elements that use the data set.

3.1 Data Set Consumers

Many report elements can use a data set. Report elements are divided into two broad categories: set-based elements and simple elements.

3.1.1 Set-Based Report Elements

List, Table, Chart and Matrix are all examples of report elements that consume any number of rows from a result set. Each element displays the results differently. All provide additional data transforms such as sorting, grouping and filtering.

3.1.2 Simple Report Elements

Data, Multi-Line Data, Grid, and Image are example of report elements that work with a single piece of data. Such elements can be bound to a data set for convenience. These elements fetch only the first row from the transformed data set and ignore the other rows.

It is useful to bind a simple element to one data row from a data set to:

· Display a company name and logo in a report title when the company name is configured in a database.

· Display a dashboard element that shows the result of a singleton (single row) query or an aggregate (e.g. a dashboard-type report that displays a data item that displays the sum of all sales pending this quarter).

3.2 Life Cycle

The Factory manages data sets automatically. The following is the data set lifecycle. The Factory, in collaboration with the Data Engine
:

· Begins to process a report element that is bound to a data set.

· Checks if the data set references a data source. If so, checks if the data source is open. If not, opens the data source.

· Identifies any data transforms requested by the report element. Passes these to the data set.

· Calls the before-open script for the data set.

· Opens the data set.

· Calls the after-open script.

· Fetches rows from the data set as needed by the report element.

When the data set can return no more rows, the Factory does the following:

· Call the before-close script for the data set.

· Close the data set.

· Call the after-close script for the data set.

3.3 Result Set Columns

A data set produces a result set when run. The result set contains a set of data rows. Within a given use of a data set, rows have a fixed set of columns. The set of columns is defined when the data set is opened. Some data sets may provide a fixed set of columns independent of whether the report uses the columns or not. In this case, every use of the data set returns the same row meta-data. Other data sets may adjust the set of columns based on the needs of the report. Different uses of the same data set may produce different sets of columns depending on the needs of the report item using the data set. For example, the query “SELECT * FROM Customers” may potentially return 10 columns, but the report may reference only five of them. In that case, some data sets may create a result set that returns only the five columns actually needed. Columns that appear in the result set are said to be realized. See the discussion in the Structure-Driven Data Transform Definition section for additional background information.

Each result set column has two key attributes at Factory run time: a name and a type. The name is given as follows:

· The alias name, if any, given in the data set column hints.

· The name given to a computed column when defining the computed column within a data set definition.

· For non-computed columns (retrieved columns), the name is provided by the data set provider at run time, or as essential data attribute specified in the ResultSet definition.

3.3.1 Column Names

Although BIRT column names are case sensitive, actual handling of case sensitivity depends on the specific ODA driver and its underlying data provider.

A data provider defined column name should be unique within a result set. In some cases, a data provider might provide the same name for multiple columns; for example, two columns retrieved from two separate tables could have the same name. When referencing a column by name and there are multiple columns having the same name, there is no way to guarantee which column will be used by BIRT. To uniquely identify such columns, each column uniquely identified by position should be assigned a unique name within the data set. A report element that binds to such a column should reference its unique column name or alias.

As described in the Data Scripting Objects section, BIRT refers to columns using any of the following forms:

row.columnName
row[“column name”]

row[columnIndex]

Some data providers might not explicitly name a data set’s columns and refer to them by position instead. In such cases a BIRT data set developer must define a position-to-name mapping in the result set definition. BIRT report elements can then refer to the columns by name. Their corresponding positions are used when the Data Engine accesses such columns through the ODA driver.

3.3.2 Anonymous Result Sets

Some data sets cannot provide complete meta-data about their result sets. For example, a data set that accesses a CSV (comma-separated value) file cannot easily determine the number, name or type of each column in the file. Instead, the application must provide this data to the data set, so that the data set can correctly interpret the data from the file. Such a data set is said to have an anonymous result set. The result set element (described below) describes the result set in this case.

If the data set contains both computed columns and a result set definition, then the resulting data row is defined as the concatenation of the result set definition columns and the computed columns. The result set definition describes columns read from the underlying data provider and computed columns are additional columns added by BIRT before the row is returned from the data set.

3.4 Data Set Parameters and Parameter Bindings

Many data sets provide input or output parameters. Input parameters represent information passed into the driver when opening a data set. Output parameters represent additional information made available to the report at the completion of a data set.

3.4.1 Parameter Definitions

For some data sets, the definitions of input and output parameters are derived attributes. That is, the rich set of information that the underlying software can provide about parameters comes from the database or other system to which the data set interfaces. For example, if the data set represents a stored procedure, the underlying driver could obtain input and output parameter definitions from the stored procedure.

In some cases, an ODA driver might not provide complete parameter meta-data. Essential data-access attributes for the parameters must then be defined manually in the data set. For example, a JDBC driver might be able to provide meta-data on a parameter’s position, but has no information on its name or data type. Such data access attributes should be defined in the data set, and must be stored in the report design file.

Data set parameter names are case sensitive within BIRT. However, handling of case sensitivity depends on the specific ODA driver and its underlying data provider.

Some data providers might not explicitly name their parameters, but refer to them by position. In such cases, the BIRT data set developer must define a position-to-name mapping in the parameter definition. BIRT report elements can then refer to parameters by name. Their corresponding positions are used when the Data Engine accesses such parameters through the ODA driver.

3.4.2 Binding Input Parameters

Input parameters have two aspects: a definition and a binding. The definition is discussed above. The binding, however, is a BIRT-specific attribute that must be stored in the report design file. Data set input parameters are bound by name to BIRT expressions.

BIRT differentiates between data set and report parameters. Data set input parameters are not automatically exposed as report parameters. However, the report developer can define report parameters that match data set input parameters. In this case, a data set input parameter would be bound to the value of the associated report parameter.

3.4.3 Accessing Output Parameters

Output parameters represent additional information made available to the report at the completion of a data set. Output parameters are exposed as properties on the JavaScript object that represents the data set. User expressions can reference output parameters to work with the values. For example, suppose that a particular data set can return a Customer Count output parameter. A data item can display this value using an expression like this:

myDataSet.outputParams[“Customer Count”]

Output parameter definitions are available though a parameter definition object:

myDataSet.paramDefns[“Customer Count”]

See the ROM Scripting specification for more detail description.

4. Scripted Data Set

The scripted data set gives the report developer the ability to implement a data set in code. For example, an application may want to read a proprietary text export file. Or, the application can call application-specific Java classes that implement a data source. In either case, the developer implements a series of simple scripts to open the data set, fetch each row, and close the data set.

The application can define user-defined properties to make it easy for a report developer to customize the data set. For example, when opening the application-specific text file above, the script writer can provide a “File Name” property that gives the name of the file to read.

BIRT will handle all transforms requested for this data set. Such transforms include sorting, totals, grouping, multiple passes over the data, etc.

4.1 Result Set Definition

A data set returns a result set that consists of a set of data rows. The data set must define the meta-data of the set of columns in the data row.

ROM provides two ways to describe the data row: static or scripted.

4.1.1 Static Result Set Definition

A result set definition can be statically defined using the inherited resultSet property of the scripted data set. The report design provides ResultSetColumn definition to describe each column in the result set.

4.1.2 Scripted Result Set Definition

Some applications may want to define the result set at run time. For example, a scripted data set that reads a text file may want to adjust the set of available columns to match what is actually available in any given file.

To create a run-time definition, the application provides the describe method. This method returns an array of ResultSetColumn objects. Each object describes a column in the expected result set. See the Data Scripting Objects section for details about this scripting object.

Note that scripted data sets can provide two distinct sets of column information: the result set description and the column hints. The result set definition (whether provided statically or dynamically) must match the name or position of the columns in the data rows returned by the data set. That is, the result set definition must exactly describe all columns in a data row. The column hints work differently. They are entirely optional for any given column. Hints can exist for any subset of the result set columns. Hints are keyed to columns by name. When used with a scripted data set, every column must have an entry in the result set definition. However, column hints (as for any data set) are entirely optional. This double-listing of columns is a bit awkward in this case; but it is only an issue for the scripted result set definition because this is the only case in which the report developer (as opposed to a Data Set UI builder tool) defines the result set columns.

4.1.3 Selecting the Definition Method

BIRT determines the result set definition method by first checking if the scripted data set provides the describe script method. If so, BIRT calls that script. If the script is missing or the script returns null, then BIRT looks for the static result set definition. If that is also missing, then report generation fails with an error.

4.1.4 Computed Columns

A scripted data set can include computed columns. If so, the computed columns are added to the result set after the fetch script method is called. That is, BIRT will add and compute the necessary columns. The fetch script should not create or reference computed columns.

4.1.5 Filters

A scripted data set can include filters. Filters are applied after the fetch script is called and computed columns are assigned values. BIRT may defer evaluation of computed columns until after the filters if no filter references the computed column.

4.2 Input and Output Parameters

Scripted data sets can define input and output parameters. The scripts read the value of input parameters and set the value of output parameters. Use the properties defined in the DataSet scripting object.

For example, to retrieve the value of an input parameter:

var inValue = myDataSet.paramDefns[“Customer Count”]
To set the value of an output parameter:

myDataSet.outputParams[“Customer Count”] = 20

5. Structure-Driven Data Transform Definition

BIRT defines a wide range of data-related expressions and properties. These include sort keys, filters, aggregates and so on. Both sets will use the same syntax: JavaScript with ROM extensions. See the ROM Scripting spec for a description of the syntax.

Many data-related features are available on report elements that display results based on one of more sets of data rows. These report elements are collectively referred to as iterator elements in this section. They include table, list and chart in the first release, and may include others in the future.
5.1 Filtering

Report elements and their contained groups can define filters. Filters defined on the iterator element apply to every data row. For example, display only orders that have not yet shipped. Group filters apply to the groups as a whole and are discussed in the next section. These report element-defined filters are in addition to any filters that may be defined as part of the data set itself.

5.2 Grouping

Grouping organizes related data into a contiguous block, allowing common data to appear once in a group header or footer, and provides the basis for computing aggregates.

BIRT provides a list of groups for each iterator element, and provides the following for each group:

· The group key column or group key expression. The value of this key column or group key expression determines what rows are related together. The key expression is in JavaScript. [Availability: In release 1, only group key column, or group key expression that refers to a single column, is supported.]
· Optional range-based grouping specification to define what range of group key values belongs in each group.

· The sort order (ascending or descending) if the group key is used as the sort key

· An optional sort key to apply to the group as a whole. Can include aggregates computed over the group. (See the List and Table spec.) [Availability: After the first release]
· An optional set of filters to apply to the group as a whole. For example, show only groups that represent customers that have more than one open order. These filters can include ranking filters such as top-n, bottom-n, top-percent and bottom-percent. For example, show only the top 10 sales reps in terms of sales this quarter. [Availability: After the first release]
5.3 Sorting

The group sort orders, defined in the last section, determine how groups are ordered in an iterator element. The iterator element can define additional sort orders for the detail rows within each individual group. The detail sort consists of a list of sort keys. Each contains:

· A sort key column name or expression, using JavaScript. [Availability: In release 1, only sort key column or an expression that refers to a single column is supported]
· The sort order (ascending or descending)

5.4 Aggregates

Reports often want to display aggregates (totals).

Aggregates are defined by 3 characteristics. All, but the first one, are optional:

· An aggregate function, such as Sum, Count, Min, Max etc.
· The grouping level over which the aggregate is computed. Defaults to the group that directly contains the aggregate or the overall row set if the aggregate is defined outside of any group,, but could also refer to the total from a higher-level group or an overall total. For example, the footer for a customer group might show the customer sales total, along with percentages of that customer’s sales for a sales region and overall sales. These percents require totals computed in the outer sales region group and for the overall data set.

· Filters. An aggregate can include an optional filter. For example, an aggregate that counts the total number of employees can include a filter on the gender column so that only female employees are counted.
See the ROM Scripting spec for a list of defined aggregates functions, and details on how to specify grouping levels and filters.
5.5 Computed Columns

Reports often include computed columns. A computed column is defined by a Javascript expression. [Availability: In release 1, computed columns may not contain aggregate expressions.]
BIRT Report Generation (Factory)

External System 2

External Data Provider

External System 1

RDBMS

Open Data Access (ODA) Framework

Custom �ODA Driver 2

Custom�ODA Driver 1

JDBC�ODA Driver

Factory

Report Design

Data Transform

Data Access

Data Engine

� Some of these operations may occur in the Data Engine. The statement that “the Factory” does these tasks is informative, not normative. A clearer way to say this would be, “At Factory time, one or more components of BIRT” do the tasks.

- 1 -

- 2 -

