
Hibernate EntityManager

User guide

Version: 3.3.2.GA

Table of Contents
Introducing EJB3 Persistence ... iv
1. Architecture .. 1

1.1. Definitions ... 1
1.2. EJB container environment ... 1

1.2.1. Container-managed entity manager ... 1
1.2.2. Application-managed entity manager .. 2
1.2.3. Persistence context scope ... 2
1.2.4. Persistence context propagation .. 2

1.3. Java SE environments ... 3
2. Setup and configuration .. 4

2.1. Setup ... 4
2.2. Configuration and bootstrapping ... 4

2.2.1. Packaging ... 4
2.2.2. Bootstrapping .. 6

2.3. Event listeners ... 8
2.4. Obtaining an EntityManager in a Java SE environment ... 9
2.5. Various .. 9

3. Working with objects .. 11
3.1. Entity states ... 11
3.2. Making objects persistent ... 11
3.3. Loading an object ... 11
3.4. Querying objects .. 12

3.4.1. Executing queries .. 12
3.4.1.1. Projection ... 12
3.4.1.2. Scalar results .. 13
3.4.1.3. Bind parameters .. 13
3.4.1.4. Pagination .. 13
3.4.1.5. Externalizing named queries .. 14
3.4.1.6. Native queries .. 14
3.4.1.7. Query hints .. 14

3.5. Modifying persistent objects ... 15
3.6. Modifying detached objects .. 15
3.7. Automatic state detection .. 16
3.8. Deleting managed objects ... 17
3.9. Flush the persistence context ... 17

3.9.1. In a transaction .. 17
3.9.2. Outside a transaction ... 18

3.10. Transitive persistence ... 18
3.11. Locking ... 19

4. Transactions and Concurrency ... 21
4.1. Entity manager and transaction scopes ... 21

4.1.1. Unit of work ... 21
4.1.2. Long units of work .. 22
4.1.3. Considering object identity .. 23
4.1.4. Common concurrency control issues ... 24

4.2. Database transaction demarcation .. 24
4.2.1. Non-managed environment .. 25

4.2.1.1. EntityTransaction ... 25

Hibernate 3.3.2.GA ii

4.2.2. Using JTA .. 26
4.2.3. Exception handling .. 27

4.3. EXTENDED Persistence Context .. 27
4.3.1. Container Managed Entity Manager .. 28
4.3.2. Application Managed Entity Manager ... 28

4.4. Optimistic concurrency control ... 28
4.4.1. Application version checking ... 29
4.4.2. Extended entity manager and automatic versioning .. 29
4.4.3. Detached objects and automatic versioning ... 30

5. Entity listeners and Callback methods .. 31
5.1. Definition .. 31
5.2. Callbacks and listeners inheritance .. 32
5.3. XML definition .. 33

6. Batch processing ... 34
6.1. Bulk update/delete .. 34

7. EJB-QL: The Object Query Language .. 36
7.1. Case Sensitivity ... 36
7.2. The from clause ... 36
7.3. Associations and joins .. 36
7.4. The select clause .. 37
7.5. Aggregate functions ... 38
7.6. Polymorphic queries ... 39
7.7. The where clause .. 39
7.8. Expressions ... 41
7.9. The order by clause .. 43
7.10. The group by clause ... 43
7.11. Subqueries ... 44
7.12. EJB-QL examples .. 45
7.13. Bulk UPDATE & DELETE Statements ... 46
7.14. Tips & Tricks ... 46

8. Native query .. 48
8.1. Expressing the resultset .. 48
8.2. Using native SQL Queries .. 48
8.3. Named queries ... 49

Hibernate EntityManager

Hibernate 3.3.2.GA iii

Introducing EJB3 Persistence
The EJB3 specification recognizes the interest and the success of the transparent object/relational mapping
paradigm. The EJB3 specification standardizes the basic APIs and the metadata needed for any object/relational
persistence mechanism. Hibernate EntityManager implements the programming interfaces and lifecycle rules
as defined by the EJB3 persistence specification. Together with Hibernate Annotations, this wrapper imple-
ments a complete (and standalone) EJB3 persistence solution on top of the mature Hibernate core. You may use
a combination of all three together, annotations without EJB3 programming interfaces and lifecycle, or even
pure native Hibernate, depending on the business and technical needs of your project. You can at all times fall
back to Hibernate native APIs, or if required, even to native JDBC and SQL.

Hibernate 3.3.2.GA iv

Chapter 1. Architecture

1.1. Definitions

EJB3 is part of the Java EE 5.0 platform. Persistence in EJB3 is available in EJB3 containers, as well as for
standalone J2SE applications that execute outside of a particular container. The following programming inter-
faces and artifacts are available in both environments.

EntityManagerFactory

An entity manager factory provides entity manager instances, all instances are configured to connect to the
same database, to use the same default settings as defined by the particular implementation, etc. You can
prepare several entity manager factories to access several data stores. This interface is similar to the Ses-

sionFactory in native Hibernate.

EntityManager

The EntityManager API is used to access a database in a particular unit of work. It is used to create and re-
move persistent entity instances, to find entities by their primary key identity, and to query over all entities.
This interface is similar to the Session in Hibernate.

Persistence context
A persistence context is a set of entity instances in which for any persistent entity identity there is a unique
entity instance. Within the persistence context, the entity instances and their lifecycle is managed by a par-
ticular entity manager. The scope of this context can either be the transaction, or an extended unit of work.

Persistence unit
The set of entity types that can be managed by a given entity manager is defined by a persistence unit. A
persistence unit defines the set of all classes that are related or grouped by the application, and which must
be collocated in their mapping to a single data store.

Container-managed entity manager
An Entity Manager whose lifecycle is managed by the container

Application-managed entity manager
An Entity Manager whose lifecycle is managed by the application.

JTA entity manager
Entity manager involved in a JTA transaction

Resource-local entity manager
Entity manager using a resource transaction (not a JTA transaction).

1.2. EJB container environment

1.2.1. Container-managed entity manager

The most common and widely used entity manager in a Java EE environment is the container-managed entity
manager. In this mode, the container is responsible for the opening and closing of the entity manager (this is
transparent to the application). It is also responsible for transaction boundaries. A container-managed entity
manager is obtained in an application through dependency injection or through JNDI lookup, A container-man-

Hibernate 3.3.2.GA 1

aged entity manger requires the use of a JTA transaction.

1.2.2. Application-managed entity manager

An application-managed entity manager allows you to control the entity manager in application code. This en-
tity manager is retrieved through the EntityManagerFactory API. An application managed entity manager can
be either involved in the current JTA transaction (a JTA entity manager), or the transaction may be controlled
through the EntityTransaction API (a resource-local entity manager). The resource-local entity manager
transaction maps to a direct resource transaction (i. e. in Hibernate's case a JDBC transaction). The entity man-
ager type (JTA or resource-local) is defined at configuration time, when setting up the entity manager factory.

1.2.3. Persistence context scope

An entity manager is the API to interact with the persistence context. Two common strategies can be used:
binding the persistence context to the transaction boundaries, or keeping the persistence context available
across several transactions.

The most common case is to bind the persistence context scope to the current transaction scope. This is only
doable when JTA transactions are used: the persistence context is associated with the JTA transaction life
cycle. When a entity manager is invoked, the persistence context is also opened, if there is no persistence con-
text associated with the current JTA transaction. Otherwise, the associated persistence context is used. The per-
sistence context ends when the JTA transaction completes. This means that during the JTA transaction, an ap-
plication will be able to work on managed entities of the same persistence context. In other words, you don't
have to pass the entity manager's persistence context across your EJB method calls, but simply use dependency
injection or lookup whenever you need an entity manager.

You can also use an extended persistence context. This can be combined with stateful session beans, if you use
a container-managed entity manager: the persistence context is created when an entity manager is retrieved
from dependency injection or JNDI lookup , and is kept until the container closes it after the completion of the
Remove stateful session bean method. This is a perfect mechanism for implementing a "long" unit of work pat-
tern. For example, if you have to deal with multiple user interaction cycles as a single unit of work (e.g. a wiz-
ard dialog that has to be fully completed), you usually model this as a unit of work from the point of view of the
application user, and implement it using an extended persistence context. Please refer to the Hibernate refer-
ence manual or the book Hibernate In Action for more information about this pattern. JBoss Seam is a frame-
work tht link together JSF and EJB3 around the notion of conversation and unit of work. For an application-man-
aged entity manager the persistence context is created when the entity manager is created and kept until the en-
tity manager is closed. In an extended persistence context, all modification operations (persist, merge, remove)
executed outside a transaction are queued until the persistence context is attached to a transaction. The transac-
tion typically occurs at the user process end, allowing the whole process to be commited or rollbacked. For ap-
plication-managed entity manager only support the exctended persistence context.

A resource-local entity manager or an entity manager created with EntityManagerFact-

ory.createEntityManager() (application-managed) has a one-to-one relationship with a persistence context.
In other situations persistence context propagation occurs.

1.2.4. Persistence context propagation

Persistence context propagation occurs for container-managed entity managers.

In a transaction-scoped container managed entity manager (common case in a Java EE environment), the JTA
transaction propagation is the same as the persistence context resource propagation. In other words, container-

Architecture

Hibernate 3.3.2.GA 2

managed transaction-scoped entity managers retrieved within a given JTA transaction all share the same per-
sistence context. In Hibernate terms, this means all managers share the same session.

Important: persistence context are never shared between different JTA transactions or between entity manager
that do not came from the same entity manager factory. There are some noteworthy exceptions for context
propagation when using extended persistence contexts:

• If a stateless session bean, message-driven bean, or stateful session bean with a transaction-scoped persist-
ence context calls a stateful session bean with an extended persistence context in the same JTA transaction,
an IllegalStateException is thrown.

• If a stateful session bean with an extended persistence context calls as stateless session bean or a stateful
session bean with a transaction-scoped persistence context in the same JTA transaction, the persistence con-
text is propagated.

• If a stateful session bean with an extended persistence context calls a stateless or stateful session bean in a
different JTA transaction context, the persistence context is not propagated.

• If a stateful session bean with an extended persistence context instantiates another stateful session bean with
an extended persistence context, the extended persistence context is inherited by the second stateful session
bean. If the second stateful session bean is called with a different transaction context than the first, an Illeg-
alStateException is thrown.

• If a stateful session bean with an extended persistence context calls a stateful session bean with a different
extended persistence context in the same transaction, an IllegalStateException is thrown.

1.3. Java SE environments

In a Java SE environment only extented context application-managed entity managers are available. You can
retrieve an entity manger using the EntityManagerFactory API. Only resource-local entity managers are avail-
able. In other words, JTA transactions and persistence context propagation are not supported in Java SE (you
will have to propagate the persistence context yourself, e.g. using the thread local session pattern popular in the
Hibernate community).

Extended context means that a persistence context is created when the entity manager is retrieved (using En-

tityManagerFactory.createEntityManager(...)) and closed when the entity manager is closed. Many re-
source-local transaction share the same persistence context, in this case.

Architecture

Hibernate 3.3.2.GA 3

Chapter 2. Setup and configuration

2.1. Setup

The EJB 3.0 / JPA compatible Hibernate EntityManager is built on top of Hibernate core and Hibernate An-
notations. You have to use compatible versions of each module. Please consult the compatibility matrix in the
hibernate.org download section. The following libraries have to be in your classpath: hibernate3.jar, hibernate-
annotations.jar, hibernate-commons-annotations.jar, hibernate-entitymanager.jar and all needed third party lib-
raries for each package (incl. ejb-persistence.jar).

2.2. Configuration and bootstrapping

2.2.1. Packaging

The configuration for entity managers both inside an application server and in a standalone application reside in
a persistence archive. A persistence archive is a JAR file which must define a persistence.xml file that resides
in the META-INF folder. All properly annotated classes included in the archive (ie having an @Entity annota-
tion), all annotated packages and all Hibernate hbm.xml files included in the archive will be added to the per-
sistence unit configuration, so by default, your persistence.xml will be quite minimalist:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">
<persistence-unit name="sample">

<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>

<property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>

</properties>
</persistence-unit>

</persistence>

Here's a more complete example of a persistence.xml file

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">
<persistence-unit name="manager1" transaction-type="JTA">

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyApp.jar</jar-file>
<class>org.acme.Employee</class>
<class>org.acme.Person</class>
<class>org.acme.Address</class>
<properties>

<property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>

</properties>
</persistence-unit>

</persistence>

name

Hibernate 3.3.2.GA 4

(attribute) Every entity manager must have a name.

transaction-type

(attribute) Transaction type used. Either JTA or RESOURCE_LOCAL (default to JTA in a JavaEE envir-
onment and to RESOURCE_LOCAL in a JavaSE environment). When a jta-datasource is used, the default
is JTA, if non-jta-datasource is used, RESOURCE_LOCAL is used.

provider

The provider is a fully-qualified class name of the EJB Persistence provider. You do not have to define it if
you don't work with several EJB3 implementations. This is needed when you are using multiple vendor im-
plementations of EJB Persistence.

jta-data-source, non-jta-data-source
This is the JNDI name of where the javax.sql.DataSource is located. When running without a JNDI avail-
able Datasource, you must specify JDBC connections with Hibernate specific properties (see below).

mapping-file

The class element specifies a EJB3 compliant XML mapping file that you will map. The file has to be in
the classpath. As per the EJB3 specification, Hibernate EntityManager will try to load the mapping file loc-
ated in the jar file at META_INF/orm.xml. Of course any explicit mapping file will be loaded too. As a matter
of fact, you can provides any XML file in the mapping file element ie. either hbm files or EJB3 deployment
descriptor.

jar-file

The jar-file elements specifies a jar to analyse. All properly annotated classes, annotated packages and all
hbm.xml files part of this jar file will be added to the persistence unit configuration. This element is mainly
used in Java EE environment. Use of this one in Java SE should be considered as non portable, in this case
a absolute url is needed. You can alternatively point to a directory (This is especially useful when in your
test environment, the persistence.xml file is not under the same root directory or jar than your domain mod-
el).

<jar-file>file:/home/turin/work/local/lab8/build/classes</jar-file>

exclude-unlisted-classes

Do not check the main jar file for annotated classes. Only explicit classes will be part of the persistence
unit.

class

The class element specifies a fully qualified class name that you will map. By default all properly annotated
classes and all hbm.xml files found inside the archive are added to the persistence unit configuration. You
can add some external entity through the class element though. As an extension to the specification, you
can add a package name in the <class> element (eg <class>org.hibernate.eg</class>). Caution, the
package will include the metadata defined at the package level (ie in package-info.java), it will not in-
clude all the classes of a given package.

properties

The properties element is used to specify vendor specific properties. This is where you will define your Hi-
bernate specific configurations. This is also where you will have to specify JDBC connection information
as well.

Be sure to define the grammar definition in the persistence element since the EJB3 specification requires the
schema validation. If the systemId ends with persistence_1_0.xsd, Hibernate entityManager will use the ver-
sion embedded in the hibernate-entitymanager.jar. No internet access will be processed.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

Setup and configuration

Hibernate 3.3.2.GA 5

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

2.2.2. Bootstrapping

The EJB3 specification defines a bootstrap procedure to access the EntityManagerFactory and the EntityMan-

ager. The bootstrap class is javax.persistence.Persistence, e.g.

EntityManagerFactory emf = Persistence.createEntityManagerFactory("manager1");
//or
Map configOverrides = new HashMap();
configOverrides.put("hibernate.hbm2ddl.auto", "create-drop");
EntityManagerFactory programmaticEmf =

Persistence.createEntityManagerFactory("manager1", configOverrides);

The first version is equivalent to the second with an empty map. The map version is a set of overrides that will
take precedence over any properties defined in your persistence.xml files. There are a couple of EJB3 proper-
ties usable in the map:

• javax.persistence.provider to define the provider class used

• javax.persistence.transactionType to define the transaction type used (either JTA or RESOURCE_LOCAL)

• javax.persistence.jtaDataSource to define the JTA datasource name in JNDI

• javax.persistence.nonJtaDataSource to define the non JTA datasource name in JNDI

When Persistence.createEntityManagerFactory() is called, the persistence implementation will search
your classpath for any META-INF/persistence.xml files using the ClassLoad-

er.getResource("META-INF/persistence.xml") method. Actually the Persistence class will look at all the
Persistence Providers available in the classpath and ask each of them if they are responsible for the creation of
the entity manager factory manager1. Each provider, from this list of resources, it will try to find an entity man-
ager that matches the name you specify in the command line with what is specified in the persistence.xml file
(of course the provider element must match the current persistent provider). If no persistence.xml with the cor-
rect name are found or if the expected persistence provider is not found, a PersistenceException is raised.

Apart from Hibernate system-level settings, all the properties available in Hibernate can be set in properties

element of the persistence.xml file or as an override in the map you pass to createEntityManagerFactory().
Please refer to the Hibernate reference documentation for a complete listing. There are however a couple of
properties available in the EJB3 provider only.

Table 2.1. Hibernate Entity Manager specific properties

Property name Description

hibern-
ate.ejb.classcache.<classname>

class cache strategy [comma cache region] of the class Default to no
cache, and default region cache to fully.qualified.classname (eg. hibern-
ate.ejb.classcache.com.acme.Cat read-write or hibern-
ate.ejb.classcache.com.acme.Cat read-write, MyRegion).

hibern-
ate.ejb.collectioncache.<collectionr
ole>

collection cache strategy [comma cache region] of the class Default to
no cache, and default region cache to fully.qualified.classname.role (eg.
hibernate.ejb.classcache.com.acme.Cat read-write or hibern-

Setup and configuration

Hibernate 3.3.2.GA 6

Property name Description

ate.ejb.classcache.com.acme.Cat read-write, MyRegion).

hibernate.ejb.cfgfile XML configuration file to use to configure Hibernate (eg. /

hibernate.cfg.xml).

hibernate.archive.autodetection Determine which element is auto discovered by Hibernate Entity Man-
ager while parsing the .par archive. (default to class,hbm).

hibernate.ejb.interceptor An optional Hibernate interceptor. The interceptor instance is shared by
all Session instances. This interceptor has to implement
org.hibernate.Interceptor and have a no-arg constructor. This prop-
erty can not be combined with hibern-

ate.ejb.interceptor.session_scoped.

hibern-
ate.ejb.interceptor.session_scoped

An optional Hibernate interceptor. The interceptor instance is specific to
a given Session instance (and hence can be non thread-safe). This inter-
ceptor has to implement org.hibernate.Interceptor and have a no-
arg constructor. This property can not be combined with hibern-

ate.ejb.interceptor.

hibernate.ejb.naming_strategy An optional naming strategy. The default naming strategy used is
EJB3NamingStrategy. You also might want to consider the Default-

ComponentSafeNamingStrategy.

hibernate.ejb.event.<eventtype> Event listener list for a given eventtype. The list of event listeners is a
comma separated fully qualified class name list (eg. hibern-
ate.ejb.event.pre-load com.acme.SecurityListener,
com.acme.AuditListener)

hibernate.ejb.use_class_enhancer Whether or not use Application server class enhancement at deployment
time (default to false)

hibernate.ejb.discard_pc_on_close If true, the persistence context will be discarded (think clear() when the
method is called. Otherwise the persistence context will stay alive till
the transaction completion: all objects will remain managed, and any
change will be sy,chronized with the database (default to false, ie wait
the transaction completion)

Note that you can mix XML <class> declaration and hibernate.ejb.cfgfile usage in the same configura-
tion. Be aware of the potential clashed. The properties set in persistence.xml will override the one in the
defined hibernate.cfg.xml.

Note

It is important that you do not override hibernate.transaction.factory_class, Hibernate Entity-
Manager automatically set the appropriate transaction factory depending on the EntityManager type (ie
JTA versus RESOURSE_LOCAL). If you are working in a Java EE environment, you might want to set the
hibernate.transaction.manager_lookup_class though.

Here is a typical configuration in a J2SE environment

<persistence>
<persistence-unit name="manager1" transaction-type="RESOURCE_LOCAL">

<class>org.hibernate.ejb.test.Cat</class>
<class>org.hibernate.ejb.test.Distributor</class>

Setup and configuration

Hibernate 3.3.2.GA 7

<class>org.hibernate.ejb.test.Item</class>
<properties>

<property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.connection.driver_class" value="org.hsqldb.jdbcDriver"/>
<property name="hibernate.connection.username" value="sa"/>
<property name="hibernate.connection.password" value=""/>
<property name="hibernate.connection.url" value="jdbc:hsqldb:."/>
<property name="hibernate.max_fetch_depth" value="3"/>

<!-- cache configuration -->
<property name="hibernate.ejb.classcache.org.hibernate.ejb.test.Item" value="read-write"/>
<property name="hibernate.ejb.collectioncache.org.hibernate.ejb.test.Item.distributors" value="read-write, RegionName"/>

<!-- alternatively to <class> and <property> declarations, you can use a regular hibernate.cfg.xml file -->
<!-- property name="hibernate.ejb.cfgfile" value="/org/hibernate/ejb/test/hibernate.cfg.xml"/ -->

</properties>
</persistence-unit>

</persistence>

To ease the programmatic configuration, Hibernate Entity Manager provide a proprietary API. This API is very
similar to the Configuration API and share the same concepts: Ejb3Configuration. Refer to the JavaDoc and
the Hibernate reference guide for more detailed informations on how to use it.

TODO: me more descriptive on some APIs like setDatasource()

Ejb3Configuration cfg = new Ejb3Configuration();
EntityManagerFactory emf =

cfg.addProperties(properties) //add some properties
.setInterceptor(myInterceptorImpl) // set an interceptor
.addAnnotatedClass(MyAnnotatedClass.class) //add a class to be mapped
.addClass(NonAnnotatedClass.class) //add an hbm.xml file using the Hibernate convention
.addRerousce("mypath/MyOtherCLass.hbm.xml) //add an hbm.xml file
.addRerousce("mypath/orm.xml) //add an EJB3 deployment descriptor
.configure("/mypath/hibernate.cfg.xml") //add a regular hibernate.cfg.xml
.buildEntityManagerFactory(); //Create the entity manager factory

2.3. Event listeners

Hibernate Entity Manager needs to enhance Hibernate core to implements all the EJB3 semantics. It does that
through the event listener system of Hibernate. Be careful when you use the event system yourself, you might
override some of the EJB3 semantics. A safe way is to add your event listeners to the list given below.

Table 2.2. Hibernate Entity Manager default event listeners

Event Listeners

flush org.hibernate.ejb.event.EJB3FlushEventListener

auto-flush org.hibernate.ejb.event.EJB3AutoFlushEventListener

delete org.hibernate.ejb.event.EJB3DeleteEventListener

flush-entity org.hibernate.ejb.event.EJB3FlushEntityEventListener

merge org.hibernate.ejb.event.EJB3MergeEventListener

create org.hibernate.ejb.event.EJB3PersistEventListener

create-onflush org.hibernate.ejb.event.EJB3PersistOnFlushEventListener

save org.hibernate.ejb.event.EJB3SaveEventListener

Setup and configuration

Hibernate 3.3.2.GA 8

Event Listeners

save-update org.hibernate.ejb.event.EJB3SaveOrUpdateEventListener

pre-insert org.hibernate.secure.JACCPreInsertEventListener,
org.hibernate.valitator.event.ValidateEventListener

pre-insert org.hibernate.secure.JACCPreUpdateEventListener,
org.hibernate.valitator.event.ValidateEventListener

pre-delete org.hibernate.secure.JACCPreDeleteEventListener

pre-load org.hibernate.secure.JACCPreLoadEventListener

post-delete org.hibernate.ejb.event.EJB3PostDeleteEventListener

post-insert org.hibernate.ejb.event.EJB3PostInsertEventListener

post-load org.hibernate.ejb.event.EJB3PostLoadEventListener

post-update org.hibernate.ejb.event.EJB3PostUpdateEventListener

Note that the JACC*EventListeners are removed if the security is not enabled.

You can configure the event listeners either through the properties (see Configuration and bootstrapping) or
through the ejb3configuration.getEventListeners() API.

2.4. Obtaining an EntityManager in a Java SE environment

An entity manager factory should be considered as an immutable configuration holder, it is defined to point to a
single datasource and to map a defined set of entities. This is the entry point to create and manage EntityMan-

agers. The Persistence class is bootstrap class to create an entity manager factory.

// Use persistence.xml configuration
EntityManagerFactory emf = Persistence.createEntityManagerFactory("manager1")
EntityManager em = emf.createEntityManager(); // Retrieve an application managed entity manager
// Work with the EM
em.close();
...
emf.close(); //close at application end

An entity manager factory is typically create at application initialization time and closed at application end. It's
creation is an expensive process. For those who are familiar with Hibernate, an entity manager factory is very
much like a session factory. Actually, an entity manager factory is a wrapper on top of a session factory. Calls
to the entityManagerFactory are thread safe.

Thanks to the EntityManagerFactory, you can retrieve an extended entity manager. The extended entity man-
ager keep the same persistence context for the lifetime of the entity manager: in other words, the entities are
still managed between two transactions (unless you call entityManager.clear() in between). You can see an en-
tity manager as a small wrapper on top of an Hibernate session.

TODO explains emf.createEntityManager(Map)

2.5. Various

Setup and configuration

Hibernate 3.3.2.GA 9

Hibernate Entity Manager comes with Hibernate Validator configured out of the box. You don't have to over-
ride any event yourself. If you do not use Hibernate Validator annotations in your domain model, there will be
no performance cost. For more information on Hibernate Validator, please refer to the Hibernate Annotations
reference guide.

Setup and configuration

Hibernate 3.3.2.GA 10

Chapter 3. Working with objects

3.1. Entity states

Like in Hibernate (comparable terms in parantheses), an entity instance is in one of the following states:

• New (transient): an entity is new if it has just been instantiated using the new operator, and it is not associ-
ated with a persistence context. It has no persistent representation in the database and no identifier value has
been assigned.

• Managed (persistent): a managed entity instance is an instance with a persistent identity that is currently as-
sociated with a persistence context.

• Detached: the entity instance is an instance with a persistent identity that is no longer associated with a per-
sistence context, usually because the persistence context was closed or the instance was evicted from the
context.

• Removed: a removed entity instance is an instance with a persistent identity, associated with a persistence
context, but scheduled for removal from the database.

The EntityManager API allows you to change the state of an entity, or in other words, to load and store objects.
You will find persistence with EJB3 easier to understand if you think about object state management, not man-
aging of SQL statements.

3.2. Making objects persistent

Once you've created a new entity instance (using the common new operator) it is in new state. You can make it
persistent by associating it to an entity manager:

DomesticCat fritz = new DomesticCat();
fritz.setColor(Color.GINGER);
fritz.setSex('M');
fritz.setName("Fritz");
em.persist(fritz);

If the DomesticCat entity type has a generated identifier, the value is associated to the instance when per-

sist() is called. If the identifier is not automatically generated, the application-assigned (usually natural) key
value has to be set on the instance before persist() is called.

3.3. Loading an object

Load an entity instance by its identifier value with the entity manager's find() method:

cat = em.find(Cat.class, catId);

// You may need to wrap the primitive identifiers
long catId = 1234;
em.find(Cat.class, new Long(catId));

In some cases, you don't really want to load the object state, but just having a reference to it (ie a proxy). You

Hibernate 3.3.2.GA 11

can get this reference using the getReference() method. This is especially useful to link a child to its parent
wo having to load the parent.

child = new Child();
child.SetName("Henry");
Parent parent = em.getReference(Parent.class, parentId); //no query to the DB
child.setParent(parent);
em.persist(child);

You can reload an entity instance and it's collections at any time using the em.refresh() operation. This is use-
ful when database triggers are used to initialize some of the properties of the entity. Note that only the entity in-
stance and its collections are refreshed unless you specify REFRESH as a cascade style of any associations:

em.persist(cat);
em.flush(); // force the SQL insert and triggers to run
em.refresh(cat); //re-read the state (after the trigger executes)

3.4. Querying objects

If you don't know the identifier values of the objects you are looking for, you need a query. The Hibernate En-
tityManager implementation supports an easy-to-use but powerful object-oriented query language (EJB3-QL)
which has been inspired by HQL (and vice-versa). Both query languages are portable across databases, the use
entity and property names as identifiers (instead of table and column names). You may also express your query
in the native SQL of your database, with optional support from EJB3 for result set conversion into Java busi-
ness objects.

3.4.1. Executing queries

EJB3QL and SQL queries are represented by an instance of javax.persistence.Query. This interface offers
methods for parameter binding, result set handling, and for execution of the query. Queries are always created
using the current entity manager:

List cats = em.createQuery(
"select cat from Cat as cat where cat.birthdate < ?1")
.setParameter(1, date, TemporalType.DATE)
.getResultList();

List mothers = em.createQuery(
"select mother from Cat as cat join cat.mother as mother where cat.name = ?1")
.setParameter(1, name)
.getResultList();

List kittens = em.createQuery(
"from Cat as cat where cat.mother = ?1")
.setEntity(1, pk)
.getResultList();

Cat mother = (Cat) em.createQuery(
"select cat.mother from Cat as cat where cat = ?1")
.setParameter(1, izi)
.getSingleResult();

A query is usually executed by invoking getResultList(). This method loads the resulting instances of the
query completly into memory. Entity instances retrieved by a query are in persistent state. The getSingleRes-

ult() method offers a shortcut if you know your query will only return a single object.

3.4.1.1. Projection

Working with objects

Hibernate 3.3.2.GA 12

An EJB3QL query queries can return tuples of objects if projection is used. Each result tuple is returned as an
object array:

Iterator kittensAndMothers = sess.createQuery(
"select kitten, mother from Cat kitten join kitten.mother mother")
.getResultList()
.iterator();

while (kittensAndMothers.hasNext()) {
Object[] tuple = (Object[]) kittensAndMothers.next();
Cat kitten = (Cat) tuple[0];
Cat mother = (Cat) tuple[1];
....

}

3.4.1.2. Scalar results

Queries may specify a particular property of an entity in the select clause, instead of an entity alias. You may
call SQL aggregate functions as well. Returned non-transactional objects or aggregation results are considered
"scalar" results and are not entities in persistent state (in other words, they are considered "read only"):

Iterator results = em.createQuery(
"select cat.color, min(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
.getResultList()
.iterator();

while (results.hasNext()) {
Object[] row = results.next();
Color type = (Color) row[0];
Date oldest = (Date) row[1];
Integer count = (Integer) row[2];
.....

}

3.4.1.3. Bind parameters

Both named and positional query parameters are supported, the Query API offers several methods to bind argu-
ments. The EJB3 specification numbers positional parameters from one. Named parameters are identifiers of
the form :paramname in the query string. Named parameters should be prefered, they are more robust and easier
to read and understand:

// Named parameter (preferred)
Query q = em.createQuery("select cat from DomesticCat cat where cat.name = :name");
q.setParameter("name", "Fritz");
List cats = q.getResultList();

// Positional parameter
Query q = em.createQuery("select cat from DomesticCat cat where cat.name = ?1");
q.setParameter(1, "Izi");
List cats = q.getResultList();

// Named parameter list
List names = new ArrayList();
names.add("Izi");
names.add("Fritz");
Query q = em.createQuery("select cat from DomesticCat cat where cat.name in (:namesList)");
q.setParameter("namesList", names);
List cats = q.list();

3.4.1.4. Pagination

Working with objects

Hibernate 3.3.2.GA 13

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and/or
the first row you want to retrieve), use the following methods:

Query q = em.createQuery("select cat from DomesticCat cat");
q.setFirstResult(20);
q.setMaxResults(10);
List cats = q.getResultList(); //return cats from the 20th position to 29th

Hibernate knows how to translate this limit query into the native SQL of your DBMS.

3.4.1.5. Externalizing named queries

You may also define named queries through annotations:

@javax.persistence.NamedQuery(name="eg.DomesticCat.by.name.and.minimum.weight",
query="select cat from eg.DomesticCat as cat where cat.name = ?1 and cat.weight > ?2")

Parameters are bound programatically to the named query, before it is executed:

Query q = em.createNamedQuery("eg.DomesticCat.by.name.and.minimum.weight");
q.setString(1, name);
q.setInt(2, minWeight);
List cats = q.getResultList();

Note that the actual program code is independent of the query language that is used, you may also define native
SQL queries in metadata, or use Hibernate's native facilities by placing them in XML mapping files.

3.4.1.6. Native queries

You may express a query in SQL, using createNativeQuery() and let Hibernate take care mapping from JD-
BC result sets to business objects. Use the @SqlResultSetMapping (please see the Hibernate Annotations refer-
ence documentation on how to map a SQL resultset mapping) or the entity mapping (if the column names of
the query result are the same as the names declared in the entity mapping; remember that all entity columns
have to be returned for this mechanism to work):

@SqlResultSetMapping(name="getItem", entities =
@EntityResult(entityClass=org.hibernate.ejb.test.Item.class, fields= {

@FieldResult(name="name", column="itemname"),
@FieldResult(name="descr", column="itemdescription")

})
)

Query q = em.createNativeQuery("select name as itemname, descr as itemdescription from Item", "getItem");
item = (Item) q.getSingleResult(); //from a resultset

Query q = em.createNativeQuery("select * from Item", Item.class);
item = (Item) q.getSingleResult(); //from a class columns names match the mapping

Note

For more information about scalar support in named queries, please refers to the Hibenate Annotations
documentation

3.4.1.7. Query hints

Query hints (for performance optimization, usually) are implementation specific. Hints are declared using the
query.setHint(String name, Object value) method, or through the @Named(Native)Query(hints) annota-

Working with objects

Hibernate 3.3.2.GA 14

tion Note that these are not SQL query hints! The Hibernate EJB3 implementation offers the following query
hints:

Table 3.1. Hibernate query hints

Hint Description

org.hibernate.timeout Query timeout in seconds (eg. new Integer(10))

org.hibernate.fetchSize Number of rows fetched by the JDBC driver per
roundtrip (eg. new Integer(50))

org.hibernate.comment Add a comment to the SQL query, useful for the
DBA (e.g. new String("fetch all orders in 1 state-
ment"))

org.hibernate.cacheable Whether or not a query is cacheable (eg. new
Boolean(true)), defaults to false

org.hibernate.cacheMode Override the cache mode for this query (eg. Ca-
cheMode.REFRESH)

org.hibernate.cacheRegion Cache region of this query (eg. new
String("regionName"))

org.hibernate.readOnly Entities retrieved by this query will be loaded in a
read-only mode where Hibernate will never dirty-
check them or make changes persistent (eg. new
Boolean(true)), default to false

org.hibernate.flushMode Flush mode used for this query

org.hibernate.cacheMode Cache mode used for this query

The value object accept both the native type or its string equivalent (eg. CaheMode.REFRESH or “REFRESH”).
Please refer to the Hibernate reference documentation for more information.

3.5. Modifying persistent objects

Transactional managed instances (ie. objects loaded, saved, created or queried by the entity manager) may be
manipulated by the application and any changes to persistent state will be persisted when the Entity manager is
flushed (discussed later in this chapter). There is no need to call a particular method to make your modifications
persistent. A straightforward wayt to update the state of an entity instance is to find() it, and then manipulate it
directly, while the persistence context is open:

Cat cat = em.find(Cat.class, new Long(69));
cat.setName("PK");
em.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore Hibernate offers an al-
ternate approach, using detached instances.

3.6. Modifying detached objects

Working with objects

Hibernate 3.3.2.GA 15

Many applications need to retrieve an object in one transaction, send it to the presentation layer for manipula-
tion, and later save the changes in a new transaction. There can be significant user think and waiting time
between both transactions. Applications that use this kind of approach in a high-concurrency environment usu-
ally use versioned data to ensure isolation for the "long" unit of work.

The EJB3 specifications supports this development model by providing for persistence of modifications made
to detached instances using the EntityManager.merge() method:

// in the first entity manager
Cat cat = firstEntityManager.find(Cat.class, catId);
Cat potentialMate = new Cat();
firstEntityManager.persist(potentialMate);

// in a higher layer of the application
cat.setMate(potentialMate);

// later, in a new entity manager
secondEntityManager.merge(cat); // update cat
secondEntityManager.merge(mate); // update mate

The merge() method merges modifications made to the detached instance into the corresponding managed in-
stance, if any, without consideration of the state of the persistence context. In other words, the merged objects
state overrides the persistent entity state in the persistence context, if one is already present. The application
should individually merge() detached instances reachable from the given detached instance if and only if it
wants their state also to be persistent. This can be cascaded to associated entities and collections, using transit-
ive persistence, see Transitive persistence.

3.7. Automatic state detection

The merge operation is clever enough to automatically detect whether the merging of the detached instance has
to result in an insert or update. In other words, you don't have to worry about passing a new instance (and not a
detached instance) to merge(), the entity manager will figure this out for you:

// In the first entity manager
Cat cat = firstEntityManager.find(Cat.class, catID);

// In a higher layer of the application, detached
Cat mate = new Cat();
cat.setMate(mate);

// Later, in a new entity manager
secondEntityManager.merge(cat); // update existing state
secondEntityManager.merge(mate); // save the new instance

The usage and semantics of merge() seems to be confusing for new users. Firstly, as long as you are not trying
to use object state loaded in one entity manager in another new entity manager, you should not need to use
merge() at all. Some whole applications will never use this method.

Usually merge() is used in the following scenario:

• the application loads an object in the first entity manager

• the object is passed up to the presentation layer

• some modifications are made to the object

• the object is passed back down to the business logic layer

Working with objects

Hibernate 3.3.2.GA 16

• the application persists these modifications by calling merge() in a second entity manager

Here is the exact semantic of merge():

• if there is a managed instance with the same identifier currently associated with the persistence context,
copy the state of the given object onto the managed instance

• if there is no managed instance currently associated with the persistence context, try to load it from the
database, or create a new managed instance

• the managed instance is returned

• the given instance does not become associated with the persistence context, it remains detached and is usu-
ally discarded

Merging vs. saveOrUpdate/saveOrUpdateCopy

Merging in EJB3 is similar to the saveOrUpdateCopy() method in native Hibernate. However, it is not
the same as the saveOrUpdate() method, the given instance is not reattached with the persistence con-
text, but a managed instance is returned by the merge() method.

3.8. Deleting managed objects

EntityManager.remove() will remove an objects state from the database. Of course, your application might
still hold a reference to a deleted object. You can think of remove() as making a persistent instance new (aka
transient) again. It is not detached, and a merge would result in an insertion.

3.9. Flush the persistence context

3.9.1. In a transaction

From time to time the entity manager will execute the SQL DML statements needed to synchronize the data
store with the state of objects held in memory. This process, flush, occurs by default (this is Hibernate specific
and not defined by the specification) at the following points:

• before query execution*

• from javax.persistence.EntityTransaction.commit()*

• when EntityManager.flush() is called*

(*) if a transaction is active

The SQL statements are issued in the following order

• all entity insertions, in the same order the corresponding objects were saved using EntityMan-

ager.persist()

• all entity updates

Working with objects

Hibernate 3.3.2.GA 17

• all collection deletions

• all collection element deletions, updates and insertions

• all collection insertions

• all entity deletions, in the same order the corresponding objects were deleted using EntityMan-

ager.remove()

(Exception: entity instances using application-assigned identifiers are inserted when they are saved.)

Except when you explicity flush(), there are absolutely no guarantees about when the entity manager executes
the JDBC calls, only the order in which they are executed. However, Hibernate does guarantee that the
Query.getResultList()/Query.getSingleResult() will never return stale data; nor will they return wrong
data if executed in an active transaction.

It is possible to change the default behavior so that flush occurs less frequently. The FlushModeType for an en-
tity manager defines two different modes: only flush at commit time or flush automatically using the explained
routine unless flush() is called explicitly.

em = emf.createEntityManager();
Transaction tx = em.getTransaction().begin();
em.setFlushMode(FlushModeType.COMMIT); // allow queries to return stale state

Cat izi = em.find(Cat.class, id);
izi.setName(iznizi);

// might return stale data
em.createQuery("from Cat as cat left outer join cat.kittens kitten").getResultList();

// change to izi is not flushed!
...
em.getTransaction().commit(); // flush occurs

During flush, an exception might happen (e.g. if a DML operation violates a constraint). TODO: Add link to
exception handling.

Hibernate provides more flush modes than the one described in the EJB3 specification. Please refer to the Hi-
bernate core reference documentation for more informations.

3.9.2. Outside a transaction

In an EXTENDED persistence context, all read only operations of the entity manager can be executed outside a
transaction (find(), getReference(), refresh(), and read queries). Some modifications operations can be ex-
ecuted outside a transaction, but they are queued until the persistence context join a transaction. This is the case
of persist(), merge(), remove(). Some operations cannot be called outside a transaction: flush(), lock(), and
update/delete queries.

3.10. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especially if you deal with a graph of as-
sociated objects. A common case is a parent/child relationship. Consider the following example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses or strings),
their lifecycle would depend on the parent and no further action would be required for convenient "cascading"

Working with objects

Hibernate 3.3.2.GA 18

of state changes. When the parent is persisted, the value-typed child objects are persisted as well, when the par-
ent is removed, the children will be removed, etc. This even works for operations such as the removal of a child
from the collection; Hibernate will detect this and, since value-typed objects can't have shared references, re-
move the child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g. categories
and items, or parent and child cats). Entities have their own lifecycle, support shared references (so removing
an entity from the collection does not mean it can be deleted), and there is by default no cascading of state from
one entity to any other associated entities. The EJB3 specification does not require persistence by reachability.
It supports a more flexible model of transitive persistence, as first seen in Hibernate.

For each basic operation of the entity manager - including persist(), merge(), remove(), refresh() - there is
a corresponding cascade style. Respectively, the cascade styles are named PERSIST, MERGE, REMOVE, RE-
FRESH. If you want an operation to be cascaded to associated entity (or collection of entities), you must indic-
ate that in the association annotation:

@OneToOne(cascade=CascadeType.PERSIST)

Cascading options can be combined:

@OneToOne(cascade= { CascadeType.PERSIST, CascadeType.REMOVE, CascadeType.REFRESH })

You may even use CascadeType.ALL to specify that all operations should be cascaded for a particular associ-
ation. Remember that by default, no operation is cascaded.

Hibernate offers more native cascading options, please refer to the Hibernate Annotations manual and the Hi-
bernate reference guide for more informations.

Recommendations:

• It doesn't usually make sense to enable cascade on a @ManyToOne or @ManyToMany association. Cascade is of-
ten useful for @OneToOne and @OneToMany associations.

• If the child object's lifespan is bounded by the lifespan of the parent object, make the parent a full lifecycle
object by specifying CascadeType.ALL and org.hibernate.annotations.CascadeType.DELETE_ORPHAN

(please refer to the Hibernate reference guide for the semantics of orphan delete)

• Otherwise, you might not need cascade at all. But if you think that you will often be working with the par-
ent and children together in the same transaction, and you want to save yourself some typing, consider us-
ing cascade={PERSIST, MERGE}. These options can even make sense for a many-to-many association.

3.11. Locking

The default locking system in EJB3 is mostly based on optimistic locking (ie using a version column to check
any concurrency issues). EJB3 has defined an additional mechanism to increase the concurrency guaranties.
You can apply a lock on a given entity (and it's associated entities if LOCK is cascaded) through the
lock(Object entity) method. Depending on the concurrency guaranties you requires, you choose a lock
mode:

• LockMode.READ prevents dirty-reads and non repeatable read on a given entity.

• LockMode.WRITE prevents dirty-reads and non repeatable read on a given entity and force an increase of the

Working with objects

Hibernate 3.3.2.GA 19

version number if any.

Working with objects

Hibernate 3.3.2.GA 20

Chapter 4. Transactions and Concurrency
The most important point about Hibernate Entity Manager and concurrency control is that it is very easy to un-
derstand. Hibernate Entity Manager directly uses JDBC connections and JTA resources without adding any ad-
ditional locking behavior. We highly recommend you spend some time with the JDBC, ANSI, and transaction
isolation specification of your database management system. Hibernate Entity Manager only adds automatic
versioning but does not lock objects in memory or change the isolation level of your database transactions. Ba-
sically, use Hibernate Entity Manager like you would use direct JDBC (or JTA/CMT) with your database re-
sources.

We start the discussion of concurrency control in Hibernate with the granularity of EntityManagerFactory,
and EntityManager, as well as database transactions and long units of work..

In this chapter, and unless explicitly expressed, we will mix and match the concept of entity manager and per-
sistence context. One is an API and programming object, the other a definition of scope. However, keep in
mind the essential difference. A persistence context is usually bound to a JTA transaction in Java EE, and a per-
sistence context starts and ends at transaction boundaries (transaction-scoped) unless you use an extended entity
manager. Please refer to Section 1.2.3, “Persistence context scope” for more information.

4.1. Entity manager and transaction scopes

A EntityManagerFactory is an expensive-to-create, threadsafe object intended to be shared by all application
threads. It is created once, usually on application startup.

An EntityManager is an inexpensive, non-threadsafe object that should be used once, for a single business pro-
cess, a single unit of work, and then discarded. An EntityManager will not obtain a JDBC Connection (or a
Datasource) unless it is needed, so you may safely open and close an EntityManager even if you are not sure
that data access will be needed to serve a particular request. (This becomes important as soon as you are imple-
menting some of the following patterns using request interception.)

To complete this picture you also have to think about database transactions. A database transaction has to be as
short as possible, to reduce lock contention in the database. Long database transactions will prevent your ap-
plication from scaling to highly concurrent load.

What is the scope of a unit of work? Can a single Hibernate EntityManager span several database transactions
or is this a one-to-one relationship of scopes? When should you open and close a Session and how do you de-
marcate the database transaction boundaries?

4.1.1. Unit of work

First, don't use the entitymanager-per-operation antipattern, that is, don't open and close an EntityManager for
every simple database call in a single thread! Of course, the same is true for database transactions. Database
calls in an application are made using a planned sequence, they are grouped into atomic units of work. (Note
that this also means that auto-commit after every single SQL statement is useless in an application, this mode is
intended for ad-hoc SQL console work.)

The most common pattern in a multi-user client/server application is entitymanager-per-request. In this model,
a request from the client is send to the server (where the EJB3 persistence layer runs), a new EntityManager is
opened, and all database operations are executed in this unit of work. Once the work has been completed (and
the response for the client has been prepared), the persistence context is flushed and closed, as well as the entity
manager object. You would also use a single database transaction to serve the clients request. The relationship

Hibernate 3.3.2.GA 21

between the two is one-to-one and this model is a perfect fit for many applications.

This is the default EJB3 persistence model in a Java EE environment (JTA bounded, transaction-scoped persist-
ence context); injected (or looked up) entity managers share the same persistence context for a particular JTA
transaction. The beauty of EJB3 is that you don't have to care about that anymore and just see data access
through entity manager and demaraction of transaction scope on session beans as completely orthogonal.

The challenge is the implementation of this (and other) behavior outside an EJB3 container: not only has the
EntityManager and resource-local transaction to be started and ended correctly, but they also have to be ac-
cessible for data access operations. The demarcation of a unit of work is ideally implemented using an inter-
ceptor that runs when a request hits the non-EJB3 container server and before the response will be send (i.e. a
ServletFilter if you are using a standalone servlet container). We recommend to bind the EntityManager to
the thread that serves the request, using a ThreadLocal variable. This allows easy access (like accessing a static
variable) in all code that runs in this thread. Depending on the database transaction demarcation mechanism
you chose, you might also keep the transaction context in a ThreadLocal variable. The implementation patterns
for this are known as ThreadLocal Session and Open Session in View in the Hibernate community. You can
easily extend the HibernateUtil shown in the Hibernate reference documentation to implement this pattern,
you don't need any external software (it's in fact very trivial). Of course, you'd have to find a way to implement
an interceptor and set it up in your environment. See the Hibernate website for tips and examples. Once again,
remember that your first choice is naturally an EJB3 container - preferably a light and modular one such as
JBoss application server.

4.1.2. Long units of work

The entitymanager-per-request pattern is not the only useful concept you can use to design units of work. Many
business processes require a whole series of interactions with the user interleaved with database accesses. In
web and enterprise applications it is not acceptable for a database transaction to span a user interaction with
possibly long waiting time between requests. Consider the following example:

• The first screen of a dialog opens, the data seen by the user has been loaded in a particular EntityManager
and resource-local transaction. The user is free to modify the detached objects.

• The user clicks "Save" after 5 minutes and expects his modifications to be made persistent; he also expects
that he was the only person editing this information and that no conflicting modification can occur.

We call this unit of work, from the point of view of the user, a long running application transaction. There are
many ways how you can implement this in your application.

A first naive implementation might keep the EntityManager and database transaction open during user think
time, with locks held in the database to prevent concurrent modification, and to guarantee isolation and atom-
icity. This is of course an anti-pattern, a pessimistic approach, since lock contention would not allow the applic-
ation to scale with the number of concurrent users.

Clearly, we have to use several database transactions to implement the application transaction. In this case,
maintaining isolation of business processes becomes the partial responsibility of the application tier. A single
application transaction usually spans several database transactions. It will be atomic if only one of these data-
base transactions (the last one) stores the updated data, all others simply read data (e.g. in a wizard-style dialog
spanning several request/response cycles). This is easier to implement than it might sound, especially if you use
EJB3 entity manager and persistence context features:

• Automatic Versioning - An entity manager can do automatic optimistic concurrency control for you, it can
automatically detect if a concurrent modification occured during user think time (usually by comparing ver-

Transactions and Concurrency

Hibernate 3.3.2.GA 22

sion numbers or timestamps when updating the data in the final resource-local transaction).

• Detached Entities - If you decide to use the already discussed entity-per-request pattern, all loaded in-
stances will be in detached state during user think time. The entity manager allows you to merge the de-
tached (modified) state and persist the modifications, the pattern is called entitymanager-
per-request-with-detached-entities. Automatic versioning is used to isolate concurrent modifications.

• Extended Entity Manager - The Hibernate Entity Manager may be disconnected from the underlying JDBC
connection between two client calls and reconnected when a new client request occurs. This pattern is
known as entitymanager-per-application-transaction and makes even merging unnecessary. An extend per-
sistence context is responsible to collect and retain any modification (persist, merge, remove) made outside
a transaction. The next client call made inside an active transaction (typically the last operation of a user
conversation) will execute all queued modifications. Automatic versioning is used to isolate concurrent
modifications.

Both entitymanager-per-request-with-detached-objects and entitymanager-per-application-transaction have
advantages and disadvantages, we discuss them later in this chapter in the context of optimistic concurrency
control.

TODO: This note should probably come later.

4.1.3. Considering object identity

An application may concurrently access the same persistent state in two different persistence contexts.
However, an instance of a managed class is never shared between two persistence contexts. Hence there are
two different notions of identity:

Database Identity
foo.getId().equals(bar.getId())

JVM Identity
foo==bar

Then for objects attached to a particular persistence context (i.e. in the scope of an EntityManager) the two no-
tions are equivalent, and JVM identity for database identity is guaranteed by the Hibernate Entity Manager.
However, while the application might concurrently access the "same" (persistent identity) business object in
two different persistence contexts, the two instances will actually be "different" (JVM identity). Conflicts are
resolved using (automatic versioning) at flush/commit time, using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides the best scalabil-
ity, since guaranteeing identity in single-threaded units of work only doesn't need expensive locking or other
means of synchronization. The application never needs to synchronize on any business object, as long as it
sticks to a single thread per EntityManager. Within a persistence context, the application may safely use == to
compare entities.

However, an application that uses == outside of a persistence context might see unexpected results. This might
occur even in some unexpected places, for example, if you put two detached instances into the same Set. Both
might have the same database identity (i.e. they represent the same row), but JVM identity is by definition not
guaranteed for instances in detached state. The developer has to override the equals() and hashCode() meth-
ods in persistent classes and implement his own notion of object equality. There is one caveat: Never use the
database identifier to implement equality, use a business key, a combination of unique, usually immutable, at-
tributes. The database identifier will change if a transient entity is made persistent (see the contract of the per-

Transactions and Concurrency

Hibernate 3.3.2.GA 23

sist() operation). If the transient instance (usually together with detached instances) is held in a Set, changing
the hashcode breaks the contract of the Set. Attributes for good business keys don't have to be as stable as data-
base primary keys, you only have to guarantee stability as long as the objects are in the same Set. See the Hi-
bernate website for a more thorough discussion of this issue. Also note that this is not a Hibernate issue, but
simply how Java object identity and equality has to be implemented.

4.1.4. Common concurrency control issues

Never use the anti-patterns entitymanager-per-user-session or entitymanager-per-application (of course, there
are rare exceptions to this rule, e.g. entitymanager-per-application might be acceptable in a desktop application,
with manual flushing of the persistence context). Note that some of the following issues might also appear with
the recommended patterns, make sure you understand the implications before making a design decision:

• An entity manager is not thread-safe. Things which are supposed to work concurrently, like HTTP requests,
session beans, or Swing workers, will cause race conditions if an EntityManager instance would be shared.
If you keep your Hibernate EntityManager in your HttpSession (discussed later), you should consider syn-
chronizing access to your Http session. Otherwise, a user that clicks reload fast enough may use the same
EntityManager in two concurrently running threads. You will very likely have provisions for this case
already in place, for other non-threadsafe but session-scoped objects.

• An exception thrown by the Entity Manager means you have to rollback your database transaction and close
the EntityManager immediately (discussed later in more detail). If your EntityManager is bound to the ap-
plication, you have to stop the application. Rolling back the database transaction doesn't put your business
objects back into the state they were at the start of the transaction. This means the database state and the
business objects do get out of sync. Usually this is not a problem, because exceptions are not recoverable
and you have to start over your unit of work after rollback anyway.

• The persistence context caches every object that is in managed state (watched and checked for dirty state by
Hibernate). This means it grows endlessly until you get an OutOfMemoryException, if you keep it open for a
long time or simply load too much data. One solution for this is some kind batch processing with regular
flushing of the persistence context, but you should consider using a database stored procedure if you need
mass data operations. Some solutions for this problem are shown in Chapter 6, Batch processing. Keeping a
persistence context open for the duration of a user session also means a high probability of stale data, which
you have to know about and control appropriately.

4.2. Database transaction demarcation

Datatabase (or system) transaction boundaries are always necessary. No communication with the database can
occur outside of a database transaction (this seems to confuse many developers who are used to the auto-
commit mode). Always use clear transaction boundaries, even for read-only operations. Depending on your
isolation level and database capabilities this might not be required but there is no downside if you always de-
marcate transactions explicitly. You'll have to do operations outside a transaction, though, when you'll need to
retain modifications in an EXTENDED persistence context.

An EJB3 application can run in non-managed (i.e. standalone, simple Web- or Swing applications) and man-
aged J2EE environments. In a non-managed environment, an EntityManagerFactory is usually responsible for
its own database connection pool. The application developer has to manually set transaction boundaries, in oth-
er words, begin, commit, or rollback database transactions itself. A managed environment usually provides con-
tainer-managed transactions, with the transaction assembly defined declaratively through annotations of EJB
session beans, for example. Programmatic transaction demarcation is then no longer necessary, even flushing
the EntityManager is done automatically.

Transactions and Concurrency

Hibernate 3.3.2.GA 24

Usually, ending a unit of work involves four distinct phases:

• commit the (resource-local or JTA) transaction (this automatically flushes the entity manager and persist-
ence context)

• close the entity manager (if using an application-managed entity manager)
• handle exceptions

We'll now have a closer look at transaction demarcation and exception handling in both managed- and non-
managed environments.

4.2.1. Non-managed environment

If an EJB3 persistence layer runs in a non-managed environment, database connections are usually handled by
Hibernate's pooling mechanism behind the scenes. The common entity manager and transaction handling idiom
looks like this:

// Non-managed environment idiom
EntityManager em = emf.createEntityManager();
EntityTransaction tx = null;
try {

tx = em.getTransaction();
tx.begin();

// do some work
...

tx.commit();
}
catch (RuntimeException e) {

if (tx != null && tx.isActive()) tx.rollback();
throw e; // or display error message

}
finally {

em.close();
}

You don't have to flush() the EntityManager explicitly - the call to commit() automatically triggers the syn-
chronization.

A call to close() marks the end of an EntityManager. The main implication of close() is the release of re-
sources - make sure you always close and never outside of guaranteed finally block.

You will very likely never see this idiom in business code in a normal application; fatal (system) exceptions
should always be caught at the "top". In other words, the code that executes entity manager calls (in the persist-
ence layer) and the code that handles RuntimeException (and usually can only clean up and exit) are in differ-
ent layers. This can be a challenge to design yourself and you should use J2EE/EJB container services whenev-
er they are available. Exception handling is discussed later in this chapter.

EntityTransaction

In a JTA environment, you don't need any extra API to interact with the transaction in your environment.
Simply use transaction declaration or the JTA APIs.

If you are using a RESOURCE_LOCAL entity manager, you need to demarcate your transaction boundaries through
the EntityTransaction API. You can get an EntityTransaction through entityManager.getTransaction().
This EntityTransaction API provides the regular begin(), commit(), rollback() and isActive() methods.
It also provide a way to mark a transaction as rollback only, ie force the transaction to rollback. This is very

Transactions and Concurrency

Hibernate 3.3.2.GA 25

similar to the JTA operation setRollbackOnly(). When a commit() operation fail and/or if the transaction is
marked as setRollbackOnly(), the commit() method will try to rollback the transaction and raise a
javax.transaction.RollbackException.

In a JTA entity manager, entityManager.getTransaction() calls are not permitted.

4.2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind EJB3 session beans), every datasource con-
nection obtained internally by the entity manager will automatically be part of the global JTA transaction. Hi-
bernate offers two strategies for this integration.

If you use bean-managed transactions (BMT), the code will look like this:

// BMT idiom
@Resource public UserTransaction utx;
@Resource public EntityManagerFactory factory;

public void doBusiness() {
EntityManager em = factory.createEntityManager();
try {

// do some work
...

utx.commit();
}
catch (RuntimeException e) {

if (utx != null) utx.rollback();
throw e; // or display error message

}
finally {

em.close();
}

With Container Managed Transactions (CMT) in an EJB3 container, transaction demarcation is done in session
bean annotations or deployment descriptors, not programatically. The EntityManager will automatically be
flushed on transaction completion (and if you have injected or lookup the EntityManager, it will be also closed
automatically). If an exception occurs during the EntityManager use, transaction rollback occurs automatically
if you don't catch the exception. Since EntityManager exceptions are RuntimeExceptions they will rollback
the transaction as per the EJB specification (system exception vs. application exception).

It is important to let Hibernate EntityManager define the hibernate.transaction.factory_class (ie not
overriding this value). Remember to also set org.hibernate.transaction.manager_lookup_class.

If you work in a CMT environment, you might also want to use the same entity manager in different parts of
your code. Typically, in a non-managed environment you would use a ThreadLocal variable to hold the entity
manager, but a single EJB request might execute in different threads (e.g. session bean calling another session
bean). The EJB3 container takes care of the persistence context propagation for you. Either using injection or
lookup, the EJB3 container will return an entity manager with the same persistence context bound to the JTA
context if any, or create a new one and bind it (see Section 1.2.4, “Persistence context propagation” .)

Our entity manager/transaction management idiom for CMT and EJB3 container-use is reduced to this:

//CMT idiom through injection
@PersistenceContext(name="sample") EntityManager em;

In other words, all you have to do in a managed environment is to inject the EntityManager, do your data ac-
cess work, and leave the rest to the container. Transaction boundaries are set declaratively in the annotations or

Transactions and Concurrency

Hibernate 3.3.2.GA 26

deployment descriptors of your session beans. The lifecycle of the entity manager and persistence context is
completely managed by the container.

TODO: The following paragraph is very confusing, especially the beginning...

When using particular Hibernate native APIs, one caveat has to be remembered: after_statement connection
release mode. Due to a silly limitation of the JTA spec, it is not possible for Hibernate to automatically clean up
any unclosed ScrollableResults or Iterator instances returned by scroll() or iterate(). You must release
the underlying database cursor by calling ScrollableResults.close() or Hibernate.close(Iterator) expli-
city from a finally block. (Of course, most applications can easily avoid using scroll() or iterate() at all
from the CMT code.)

4.2.3. Exception handling

If the EntityManager throws an exception (including any SQLException), you should immediately rollback the
database transaction, call EntityManager.close() (if createEntityManager() has been called) and discard
the EntityManager instance. Certain methods of EntityManager will not leave the persistence context in a con-
sistent state. No exception thrown by an entity manager can be treated as recoverable. Ensure that the Entity-

Manager will be closed by calling close() in a finally block. Note that a container managed entity manager
will do that for you. You just have to let the RuntimeException propagate up to the container.

The Hibernate entity manager generally raises exceptions which encapsulate the Hibernate core exception.
Common exceptions raised by the EntityManager API are

• IllegalArgumentException: something wrong happen

• EntityNotFoundException: an entity was expected but none match the requirement

• TransactionRequiredException: this operation has to be in a transaction

• IllegalStateException: the entity manager is used in a wrong way

The HibernateException, which wraps most of the errors that can occur in a Hibernate persistence layer, is an
unchecked exception. Note that Hibernate might also throw other unchecked exceptions which are not a Hi-

bernateException. These are, again, not recoverable and appropriate action should be taken.

Hibernate wraps SQLExceptions thrown while interacting with the database in a JDBCException. In fact, Hi-
bernate will attempt to convert the eexception into a more meningful subclass of JDBCException. The underly-
ing SQLException is always available via JDBCException.getCause(). Hibernate converts the SQLException

into an appropriate JDBCException subclass using the SQLExceptionConverter attached to the SessionFact-

ory. By default, the SQLExceptionConverter is defined by the configured dialect; however, it is also possible
to plug in a custom implementation (see the javadocs for the SQLExceptionConverterFactory class for de-
tails). The standard JDBCException subtypes are:

• JDBCConnectionException - indicates an error with the underlying JDBC communication.
• SQLGrammarException - indicates a grammar or syntax problem with the issued SQL.
• ConstraintViolationException - indicates some form of integrity constraint violation.
• LockAcquisitionException - indicates an error acquiring a lock level necessary to perform the requested

operation.
• GenericJDBCException - a generic exception which did not fall into any of the other categories.

4.3. EXTENDED Persistence Context

Transactions and Concurrency

Hibernate 3.3.2.GA 27

All application managed entity manager and container managed persistence contexts defined as such are EX-

TENDED. This means that the persistence context type goes beyond the transaction life cycle. We should then un-
derstand what happens to operations made outside the scope of a transaction.

In an EXTENDED persistence context, all read only operations of the entity manager can be executed outside a
transaction (find(), getReference(), refresh(), and read queries). Some modifications operations can be ex-
ecuted outside a transaction, but they are queued until the persistence context join a transaction: this is the case
of persist(), merge(), remove(). Some operations cannot be called outside a transaction: flush(), lock(), and
update/delete queries.

4.3.1. Container Managed Entity Manager

When using an EXTENDED persistence context with a container managed entity manager, the lifecycle of the
persistence context is binded to the lifecycle of the Stateful Session Bean. Plus if the entity manager is created
outside a transaction, modifications operations (persist, merge, remove) are queued in the persistence context
and not executed to the database.

When a method of the stateful session bean involved or starting a transaction is later called, the entity manager
join the transaction. All queued operation will then be executed to synchronize the persistence context.

This is perfect to implement the entitymanager-per-conversation pattern. A stateful session bean represents
the conversation implementation. All intermediate conversation work will be processed in methods not in-
volving transaction. The end of the conversation will be processed inside a JTA transaction. Hence all queued
operations will be executed to the database and commited. If you are interested in the notion of conversation in-
side your application, have a look at JBoss Seam. Jboss Seam emphasizes the concept of conversation and en-
tity manager lifecycle and bind EJB3 and JSF together.

4.3.2. Application Managed Entity Manager

Application-managed entity manager are always EXTENDED. When you create an entity manager inside a trans-
action, the entity manager automatically join the current transaction. If the entity manager is created outside a
transaction, the entity manager will queue the modification operations. When

• entityManager.joinTransaction() is called when a JTA transaction is active for a JTA entity manager

• entityManager.getTransaction().begin() is called for a RESOURCE_LOCAL entity manager

the entity manager join the transaction and all the queued operations will then be executed to synchronize the
persistence context.

It is not legal to call entityManager.joinTransaction() if no JTA transaction is involved.

4.4. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. Version checking uses version numbers, or timestamps, to detect conflicting updates (and
to prevent lost updates). Hibernate provides for three possible approaches to writing application code that uses
optimistic concurrency. The use cases we show are in the context of long application transactions but version
checking also has the benefit of preventing lost updates in single database transactions.

Transactions and Concurrency

Hibernate 3.3.2.GA 28

4.4.1. Application version checking

In an implementation without much help from the persistence mechanism, each interaction with the database
occurs in a new EntityManager and the developer is responsible for reloading all persistent instances from the
database before manipulating them. This approach forces the application to carry out its own version checking
to ensure application transaction isolation. This approach is the least efficient in terms of database access. It is
the approach most similar to EJB2 entities:

// foo is an instance loaded by a previous entity manager
em = factory.createEntityManager();
EntityTransaction t = em.getTransaction();
t.begin();
int oldVersion = foo.getVersion();
Foo dbFoo = em.find(foo.getClass(), foo.getKey()); // load the current state
if (dbFoo.getVersion()!=foo.getVersion) throw new StaleObjectStateException();
dbFoo.setProperty("bar");
t.commit();
em.close();

The version property is mapped using @Version, and the entity manager will automatically increment it during
flush if the entity is dirty.

Of course, if you are operating in a low-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check. In that case, last commit wins will be the default strategy
for your long application transactions. Keep in mind that this might confuse the users of the application, as they
might experience lost updates without error messages or a chance to merge conflicting changes.

Clearly, manual version checking is only feasible in very trivial circumstances and not practical for most ap-
plications. Often not only single instances, but complete graphs of modified ojects have to be checked. Hibern-
ate offers automatic version checking with either detached instances or an extended entity manager and persist-
ence context as the design paradigm.

4.4.2. Extended entity manager and automatic versioning

A single persistence context is used for the whole application transaction. The entity manager checks instance
versions at flush time, throwing an exception if concurrent modification is detected. It's up to the developer to
catch and handle this exception (common options are the opportunity for the user to merge his changes or to re-
start the business process with non-stale data).

In an EXTENDED persistence context, all operations made outside an active transaction are queued. The EXTENDED

persistence context is flushed when executed in an active transaction (at worse at commit time).

The Entity Manager is disconnected from any underlying JDBC connection when waiting for user interaction.
In an application-managed extended entity manager, this occurs automatically at transaction completion. In a
stateful session bean holding a container-managed extended entity manager (i.e. a SFSB annotated with
@PersistenceContext(EXTENDED)), this occurs transparently as well. This approach is the most efficient in
terms of database access. The application need not concern itself with version checking or with merging de-
tached instances, nor does it have to reload instances in every database transaction. For those who might be
concerned by the number of connections opened and closed, remember that the connection provider should be a
connection pool, so there is no performance impact. The following examples show the idiom in a non-managed
environment:

// foo is an instance loaded earlier by the extended entity manager
em.getTransaction.begin(); // new connection to data store is obtained and tx started
foo.setProperty("bar");
em.getTransaction().commit(); // End tx, flush and check version, disconnect

Transactions and Concurrency

Hibernate 3.3.2.GA 29

The foo object still knows which persistence context it was loaded in. With getTransaction.begin(); the
entity manager obtains a new connection and resumes the persistence context. The method getTransac-

tion().commit() will not only flush and check versions, but also disconnects the entity manager from the JD-
BC connection and return the connection to the pool.

This pattern is problematic if the persistence context is too big to be stored during user think time, and if you
don't know where to store it. E.g. the HttpSession should be kept as small as possible. As the persistence con-
text is also the (mandatory) first-level cache and contains all loaded objects, we can probably use this strategy
only for a few request/response cycles. This is indeed recommended, as the persistence context will soon also
have stale data.

It is up to you where you store the extended entity manager during requests, inside an EJB3 container you
simply use a stateful session bean as described above. Don't transfer it to the web layer (or even serialize it to a
separate tier) to store it in the HttpSession. In a non-managed, two-tiered environment the HttpSession might
indeed be the right place to store it.

4.4.3. Detached objects and automatic versioning

With this paradigm, each interaction with the data store occurs in a new persistence context. However, the same
persistent instances are reused for each interaction with the database. The application manipulates the state of
detached instances originally loaded in another persistence context and then merges the changes using Entity-

Manager.merge():

// foo is an instance loaded by a non-extended entity manager
foo.setProperty("bar");
entityManager = factory.createEntityManager();
entityManager.getTransaction().begin();
managedFoo = session.merge(foo); // discard foo and from now on use managedFoo
entityManager.getTransaction().commit();
entityManager.close();

Again, the entity manager will check instance versions during flush, throwing an exception if conflicting up-
dates occured.

Transactions and Concurrency

Hibernate 3.3.2.GA 30

Chapter 5. Entity listeners and Callback methods

5.1. Definition

It is often useful for the application to react to certain events that occur inside the persistence mechanism. This
allows the implementation of certain kinds of generic functionality, and extension of built-in functionality. The
EJB3 specification provides two related mechanisms for this purpose.

A method of the entity may be designated as a callback method to receive notification of a particular entity life
cycle event. Callbacks methods are annotated by a callback annotation. You can also define an entity listener
class to be used instead of the callback methods defined directly inside the entity class. An entity listener is a
stateless class with a no-arg constructor. An entity listener is defined by annotating the entity class with the
@EntityListeners annotation:

@Entity
@EntityListeners(class=Audit.class)
public class Cat {

@Id private Integer id;
private String name;
private Calendar dateOfBirth;
@Transient private int age;
private Date lastUpdate;
//getters and setters

/**
* Set my transient property at load time based on a calculation,
* note that a native Hibernate formula mapping is better for this purpose.
*/
@PostLoad
public void calculateAge() {

Calendar birth = new GregorianCalendar();
birth.setTime(dateOfBirth);
Calendar now = new GregorianCalendar();
now.setTime(new Date());
int adjust = 0;
if (now.get(Calendar.DAY_OF_YEAR) - birth.get(Calendar.DAY_OF_YEAR) < 0) {

adjust = -1;
}
age = now.get(Calendar.YEAR) - birth.get(Calendar.YEAR) + adjust;

}
}

public class LastUpdateListener {
/**
* automatic property set before any database persistence
*/
@PreUpdate
@PrePersist
public void setLastUpdate(Cat o) {

o.setLastUpdate(new Date());
}

}

The same callback method or entity listener method can be annotated with more than one callback annotation.
For a given entity, you cannot have two methods being annotated by the same callback annotation whether it is
a callback method or an entity listener method. A callback method is a no-arg method with no return type and
any arbitrary name. An entity listener has the signature void <METHOD>(Object) where Object is of the actual
entity type (note that Hibernate Entity Manager relaxed this constraint and allows Object of java.lang.Object
type (allowing sharing of listeners accross several entities.)

Hibernate 3.3.2.GA 31

A callback method can raise a RuntimeException. The current transaction, if any, must be rolled back. The fol-
lowing callbacks are defined:

Table 5.1. Callbacks

Type Description

@PrePersist Executed before the entity manager persist operation
is actually executed or cascaded. This call is syn-
chronous with the persist operation.

@PreRemove Executed before the entity manager remove operation
is actually executed or cascaded. This call is syn-
chronous with the remove operation.

@PostPersist Executed after the entity manager persist operation is
actually executed or cascaded. This call is invoked
after the database INSERT is executed.

@PostRemove Executed after the entity manager remove operation is
actually executed or cascaded. This call is synchron-
ous with the remove operation.

@PreUpdate Executed before the database UPDATE operation.

@PostUpdate Executed after the database UPDATE operation.

@PostLoad Eexecuted after an entity has been loaded into the
current persistence context or an entity has been re-
freshed.

A callback method must not invoke EntityManager or Query methods!

5.2. Callbacks and listeners inheritance

You can define several entity listeners per entity at different level of the hierarchy.You can also define several
callbacks at different level of the hierarchy. But you cannot define two listeners for the same event in the same
entity or the same entity listener.

When an event is raised, the listeners are executed in this order:

• @EntityListeners for a given entity or superclass in the array order

• Entity listeners for the superclasses (highest first)

• Entity Listeners for the entity

• Callbacks of the superclasses (highest first)

• Callbacks of the entity

You can stop the entity listeners inheritance by using the @ExcludeSuperclassListeners, all superclasses
@EntityListeners will then be ignored.

Entity listeners and Callback methods

Hibernate 3.3.2.GA 32

5.3. XML definition

The EJB3 specification allows annotation overriding through EJB3 deployment descriptor. There is also an ad-
ditional feature that can be useful: default event listeners.

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm orm_1_0.xsd"
version="1.0"

>
<persistence-unit-metadata>

<persistence-unit-defaults>
<entity-listeners>

<entity-listener class="org.hibernate.ejb.test.pack.defaultpar.IncrementListener">
<pre-persist method-name="increment"/>

</entity-listener>
</entity-listeners>

</persistence-unit-defaults>
</persistence-unit-metadata>
<package>org.hibernate.ejb.test.pack.defaultpar</package>
<entity class="ApplicationServer">

<entity-listeners>
<entity-listener class="OtherIncrementListener">

<pre-persist method-name="increment"/>
</entity-listener>

</entity-listeners>

<pre-persist method-name="calculate"/>
</entity>

</entity-mappings>

You can override entity listeners on a given entity. An entity listener correspond to a given class and one or
several event fire a given method call. You can also define event on the entity itself to describe the callbacks.

Last but not least, you can define some default entity listeners that will apply first on the entity listener stack of
all the mapped entities of a given persistence unit. If you don't want an entity to inherit the default listeners, you
can use @ExcludeDefaultListeners (or <exclude-default-listeners/>).

Entity listeners and Callback methods

Hibernate 3.3.2.GA 33

Chapter 6. Batch processing
Batch processing has traditionally been difficult in full object/relational mapping. ORM is all about object state
management, which implies that object state is available in memory. However, Hibernate has some features to
optimize batch processing which are discussed in the Hibernate reference guide, however, EJB3 persistence dif-
fers slightly.

6.1. Bulk update/delete

As already discussed, automatic and transparent object/relational mapping is concerned with the management
of object state. This implies that the object state is available in memory, hence updating or deleting (using SQL
UPDATE and DELETE) data directly in the database will not affect in-memory state. However, Hibernate provides
methods for bulk SQL-style UPDATE and DELETE statement execution which are performed through EJB-QL
(Chapter 7, EJB-QL: The Object Query Language).

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM? ClassName (WHERE

WHERE_CONDITIONS)?. Note that:

• In the from-clause, the FROM keyword is optional.
• There can only be a single class named in the from-clause, and it cannot have an alias (this is a current Hi-

bernate limitation and will be removed soon).
• No joins (either implicit or explicit) can be specified in a bulk EJB-QL query. Sub-queries may be used in

the where-clause.
• The where-clause is also optional.

As an example, to execute an EJB-QL UPDATE, use the Query.executeUpdate() method:

EntityManager entityManager = entityManagerFactory.createEntityManager();
entityManager.getTransaction().begin();

String ejbqlUpdate = "update Customer set name = :newName where name = :oldName"
int updatedEntities = entityManager.createQuery(hqlUpdate)

.setParameter("newName", newName)

.setParameter("oldName", oldName)

.executeUpdate();
entityManager.getTransaction().commit();
entityManager.close();

To execute an EJB-QL DELETE, use the same Query.executeUpdate() method (the method is named for those
familiar with JDBC's PreparedStatement.executeUpdate()):

EntityManager entityManager = entityManagerFactory.createEntityManager();
entityManager.getTransaction().begin();

String hqlDelete = "delete Customer where name = :oldName";
int deletedEntities = entityManager.createQuery(hqlDelete)

.setParameter("oldName", oldName)

.executeUpdate();
entityManager.getTransaction().commit();
entityManager.close();

The int value returned by the Query.executeUpdate() method indicate the number of entities effected by the
operation. This may or may not correlate with the number of rows effected in the database. An EJB-QL bulk
operation might result in multiple actual SQL statements being executed, for joined-subclass, for example. The
returned number indicates the number of actual entities affected by the statement. Going back to the example of
joined-subclass, a delete against one of the subclasses may actually result in deletes against not just the table to

Hibernate 3.3.2.GA 34

which that subclass is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritence hierarchy.

Batch processing

Hibernate 3.3.2.GA 35

Chapter 7. EJB-QL: The Object Query Language
EJB3-QL has been heavily inspired by HQL, the native Hibernate Query Language. Both are therefore very
close to SQL, but portable and independent of the database schema. People familiar with HQL shouldn't have
any problem using EJB-QL. Actually, you use the same query API for EJB-QL and HQL queries. Portable
EJB3 applications however should stick to EJB-QL or similar vendor extensions are needed.

7.1. Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same as sELEct

is the same as SELECT but org.hibernate.eg.FOO is not org.hibernate.eg.Foo and foo.barSet is not
foo.BARSET.

This manual uses lowercase EJBQL keywords. Some users find queries with uppercase keywords more read-
able, but we find this convention ugly when embedded in Java code.

7.2. The from clause

The simplest possible EJB-QL query is of the form:

select c from eg.Cat c

which simply returns all instances of the class eg.Cat. Unlike HQL, the select clause is not optional in EJB-
QL. We don't usually need to qualify the class name, since the entity name defaults to the unqualified class
name (@Entity). So we almost always just write:

select c from Cat c

As you may have noticed you can assign aliases to classes, the as keywork is optional. An alias allows you to
refer to Cat in other parts of the query.

select cat from Cat as cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

select form, param from Formula as form, Parameter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with Java naming
standards for local variables (eg. domesticCat).

7.3. Associations and joins

You may also assign aliases to associated entities, or even to elements of a collection of values, using a join.

select cat, mate, kitten from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

select cat from Cat as cat left join cat.mate.kittens as kittens

Hibernate 3.3.2.GA 36

The supported join types are borrowed from ANSI SQL

• inner join

• left outer join

The inner join, left outer join constructs may be abbreviated.

select cat, mate, kitten from Cat as cat
join cat.mate as mate
left join cat.kittens as kitten

In addition, a "fetch" join allows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
fetching options in the associations and collection mapping metadata. See the Performance chapter of the Hi-
bernate reference guide for more information.

select cat from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
where clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed via the parent object. The only reason we might need an alias is if we are recurs-
ively join fetching a further collection:

select cat from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens child
left join fetch child.kittens

Note that the fetch construct may not be used in queries called using scroll() or iterate(). Nor should
fetch be used together with setMaxResults() or setFirstResult(). It is possible to create a cartesian product
by join fetching more than one collection in a query (as in the example above), be careful the result of this
product isn't bigger than you expect. Join fetching multiple collection roles also sometimes gives unexpected
results for bag mappings, so be careful about how you formulate your queries in this case.

TODO: The last statement is useless and typical developer thinking, please elaborate. The word "sometimes"
should never appear in any technical documentation.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force Hibernate to
fetch the lazy properties immediately (in the first query) using fetch all properties. This is Hibernate spe-
cific option:

select doc from Document doc fetch all properties order by doc.name

select doc from Document doc fetch all properties where lower(doc.name) like '%cats%'

7.4. The select clause

The select clause picks which objects and properties to return in the query result set. Consider:

select mate
from Cat as cat

inner join cat.mate as mate

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 37

The query will select mates of other Cats. Actually, you may express this query more compactly as:

select cat.mate from Cat cat

Queries may return properties of any value type including properties of component type:

select cat.name from DomesticCat cat
where cat.name like 'fri%'

select cust.name.firstName from Customer as cust

Queries may return multiple objects and/or properties as an array of type Object[],

select mother, offspr, mate.name
from DomesticCat as mother

inner join mother.mate as mate
left outer join mother.kittens as offspr

or as a List (HQL specific feature)

select new list(mother, offspr, mate.name)
from DomesticCat as mother

inner join mother.mate as mate
left outer join mother.kittens as offspr

or as an actual typesafe Java object,

select new Family(mother, mate, offspr)
from DomesticCat as mother

join mother.mate as mate
left join mother.kittens as offspr

assuming that the class Family has an appropriate constructor.

You may assign aliases to selected expressions using as:

select max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n
from Cat cat

This is most useful when used together with select new map (HQL specific feature):

select new map(max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n)
from Cat cat

This query returns a Map from aliases to selected values.

7.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

select avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are

• avg(...), avg(distinct ...), sum(...), sum(distinct ...), min(...), max(...)

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 38

• count(*)

• count(...), count(distinct ...), count(all...)

You may use arithmetic operators, concatenation, and recognized SQL functions in the select clause (dpending
on configured dialect, HQL specific feature):

select cat.weight + sum(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||' '||initial||' '||upper(lastName) from Person

The distinct and all keywords may be used and have the same semantics as in SQL.

select distinct cat.name from Cat cat

select count(distinct cat.name), count(cat) from Cat cat

7.6. Polymorphic queries

A query like:

select cat from Cat as cat

returns instances not only of Cat, but also of subclasses like DomesticCat. Hibernate queries may name any
Java class or interface in the from clause (portable EJB-QL queries should only name mapped entities). The
query will return instances of all persistent classes that extend that class or implement the interface. The follow-
ing query would return all persistent objects:

from java.lang.Object o // HQL only

The interface Named might be implemented by various persistent classes:

from Named n, Named m where n.name = m.name // HQL only

Note that these last two queries will require more than one SQL SELECT. This means that the order by clause
does not correctly order the whole result set. (It also means you can't call these queries using Query.scroll().)

7.7. The where clause

The where clause allows you to narrow the list of instances returned. If no alias exists, you may refer to proper-
ties by name:

select cat from Cat cat where cat.name='Fritz'

returns instances of Cat named 'Fritz'.

select foo
from Foo foo, Bar bar
where foo.startDate = bar.date

will return all instances of Foo for which there exists an instance of bar with a date property equal to the

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 39

startDate property of the Foo. Compound path expressions make the where clause extremely powerful. Con-
sider:

select cat from Cat cat where cat.mate.name is not null

This query translates to an SQL query with a table (inner) join. If you were to write something like

select foo from Foo foo
where foo.bar.baz.customer.address.city is not null

you would end up with a query that would require four table joins in SQL.

The = operator may be used to compare not only properties, but also instances:

select cat, rival from Cat cat, Cat rival where cat.mate = rival.mate

select cat, mate
from Cat cat, Cat mate
where cat.mate = mate

The special property (lowercase) id may be used to reference the unique identifier of an object. (You may also
use its mapped identifer property name.). Note that this keyword is specific to HQL.

select cat from Cat as cat where cat.id = 123

select cat from Cat as cat where cat.mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Person has a composite identifier consisting of
country and medicareNumber.

select person from bank.Person person
where person.id.country = 'AU'

and person.id.medicareNumber = 123456

select account from bank.Account account
where account.owner.id.country = 'AU'

and account.owner.id.medicareNumber = 123456

Once again, the second query requires no table join.

Likewise, the special property class accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be translated to its discriminator value. Once
again, this is specific to HQL.

select cat from Cat cat where cat.class = DomesticCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that ends in a property of component type (as opposed to a property of a
component). For example, if store.owner is an entity with a component address

store.owner.address.city // okay
store.owner.address // error!

An "any" type has the special properties id and class, allowing us to express a join in the following way
(where AuditLog.item is a property mapped with <any>). Any is specific to Hibernate

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 40

from AuditLog log, Payment payment
where log.item.class = 'Payment' and log.item.id = payment.id

Notice that log.item.class and payment.class would refer to the values of completely different database
columns in the above query.

7.8. Expressions

Expressions allowed in the where clause include most of the kind of things you could write in SQL:

• mathematical operators +, -, *, /

• binary comparison operators =, >=, <=, <>, !=, like

• logical operations and, or, not

• Parentheses (), indicating grouping
• in, not in, between, is null, is not null, is empty, is not empty, member of and not member of

• "Simple" case, case ... when ... then ... else ... end, and "searched" case, case when ... then

... else ... end (specific to HQL)

• string concatenation ...||... or concat(...,...) (use concat() for portable EJB-QL queries)

• current_date(), current_time(), current_timestamp()
• second(...), minute(...), hour(...), day(...), month(...), year(...), (specific to HQL)
• Any function or operator defined by EJB-QL 3.0: substring(), trim(), lower(), upper(), length(),

locate(), abs(), sqrt(), bit_length()

• coalesce() and nullif()

• cast(... as ...), where the second argument is the name of a Hibernate type, and extract(... from

...) if ANSI cast() and extract() is supported by the underlying database
• Any database-supported SQL scalar function like sign(), trunc(), rtrim(), sin()
• JDBC IN parameters ?
• named parameters :name, :start_date, :x1
• SQL literals 'foo', 69, '1970-01-01 10:00:01.0'

• Java public static final constants eg.Color.TABBY

in and between may be used as follows:

select cat from DomesticCat cat where cat.name between 'A' and 'B'

select cat from DomesticCat cat where cat.name in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

select cat from DomesticCat cat where cat.name not between 'A' and 'B'

select cat from DomesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Likewise, is null and is not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate configuration:

hibernate.query.substitutions true 1, false 0

This will replace the keywords true and false with the literals 1 and 0 in the translated SQL from this HQL:

select cat from Cat cat where cat.alive = true

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 41

You may test the size of a collection with the special property size, or the special size() function (HQL spe-
cific feature).

select cat from Cat cat where cat.kittens.size > 0

select cat from Cat cat where size(cat.kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using minindex and maxindex

functions. Similarly, you may refer to the minimum and maximum elements of a collection of basic type using
the minelement and maxelement functions. These are HQL specific features.

select cal from Calendar cal where maxelement(cal.holidays) > current date

select order from Order order where maxindex(order.items) > 100

select order from Order order where minelement(order.items) > 10000

The SQL functions any, some, all, exists, in are supported when passed the element or index set of a col-
lection (elements and indices functions) or the result of a subquery (see below). While subqueries are suppor-
ted by EJB-QL, elements and indices are specific HQL features.

select mother from Cat as mother, Cat as kit
where kit in elements(foo.kittens)

select p from NameList list, Person p
where p.name = some elements(list.names)

select cat from Cat cat where exists elements(cat.kittens)

select cat from Player p where 3 > all elements(p.scores)

select cat from Show show where 'fizard' in indices(show.acts)

Note that these constructs - size, elements, indices, minindex, maxindex, minelement, maxelement - may
only be used in the where clause in Hibernate3.

In HQL, elements of indexed collections (arrays, lists, maps) may be referred to by index (in a where clause
only):

select order from Order order where order.items[0].id = 1234

select person from Person person, Calendar calendar
where calendar.holidays['national day'] = person.birthDay

and person.nationality.calendar = calendar

select item from Item item, Order order
where order.items[order.deliveredItemIndices[0]] = item and order.id = 11

select item from Item item, Order order
where order.items[maxindex(order.items)] = item and order.id = 11

The expression inside [] may even be an arithmetic expression.

select item from Item item, Order order
where order.items[size(order.items) - 1] = item

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 42

HQL also provides the built-in index() function, for elements of a one-to-many association or collection of
values.

select item, index(item) from Order order
join order.items item

where index(item) < 5

Scalar SQL functions supported by the underlying database may be used

select cat from DomesticCat cat where upper(cat.name) like 'FRI%'

If you are not yet convinced by all this, think how much longer and less readable the following query would be
in SQL:

select cust
from Product prod,

Store store
inner join store.customers cust

where prod.name = 'widget'
and store.location.name in ('Melbourne', 'Sydney')
and prod = all elements(cust.currentOrder.lineItems)

Hint: something like

SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order
FROM customers cust,

stores store,
locations loc,
store_customers sc,
product prod

WHERE prod.name = 'widget'
AND store.loc_id = loc.id
AND loc.name IN ('Melbourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(

SELECT item.prod_id
FROM line_items item, orders o
WHERE item.order_id = o.id

AND cust.current_order = o.id
)

7.9. The order by clause

The list returned by a query may be ordered by any property of a returned class or components:

select cat from DomesticCat cat
order by cat.name asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

7.10. The group by clause

A query that returns aggregate values may be grouped by any property of a returned class or components:

select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 43

select foo.id, avg(name), max(name)
from Foo foo join foo.names name
group by foo.id

A having clause is also allowed.

select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color
having cat.color in (eg.Color.TABBY, eg.Color.BLACK)

SQL functions and aggregate functions are allowed in the having and order by clauses, if supported by the un-
derlying database (eg. not in MySQL).

select cat
from Cat cat

join cat.kittens kitten
group by cat
having avg(kitten.weight) > 100
order by count(kitten) asc, sum(kitten.weight) desc

Note that neither the group by clause nor the order by clause may contain arithmetic expressions.

7.11. Subqueries

For databases that support subselects, EJB-QL supports subqueries within queries. A subquery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subqueries (subqueries that
refer to an alias in the outer query) are allowed.

select fatcat from Cat as fatcat
where fatcat.weight > (

select avg(cat.weight) from DomesticCat cat
)

select cat from DomesticCat as cat
where cat.name = some (

select name.nickName from Name as name
)

select cat from Cat as cat
where not exists (

from Cat as mate where mate.mate = cat
)

select cat from DomesticCat as cat
where cat.name not in (

select name.nickName from Name as name
)

For subqueries with more than one expression in the select list, you can use a tuple constructor:

select cat from Cat as cat
where not (cat.name, cat.color) in (

select cat.name, cat.color from DomesticCat cat
)

Note that on some databases (but not Oracle or HSQLDB), you can use tuple constructors in other contexts, for
example when querying components or composite user types:

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 44

select cat from Person where name = ('Gavin', 'A', 'King')

Which is equivalent to the more verbose:

select cat from Person where name.first = 'Gavin' and name.initial = 'A' and name.last = 'King')

There are two good reasons you might not want to do this kind of thing: first, it is not completely portable
between database platforms; second, the query is now dependent upon the ordering of properties in the map-
ping document.

7.12. EJB-QL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of Hi-
bernate's main selling points (and now EJB-QL). Here are some example queries very similar to queries that I
used on a recent project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid orders for a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LINE, PRODUCT, CATALOG
and PRICE tables has four inner joins and an (uncorrelated) subselect.

select order.id, sum(price.amount), count(item)
from Order as order

join order.lineItems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price

where order.paid = false
and order.customer = :customer
and price.product = product
and catalog.effectiveDate < sysdate
and catalog.effectiveDate >= all (

select cat.effectiveDate
from Catalog as cat
where cat.effectiveDate < sysdate

)
group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really more like this:

select order.id, sum(price.amount), count(item)
from Order as order

join order.lineItems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price

where order.paid = false
and order.customer = :customer
and price.product = product
and catalog = :currentCatalog

group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

The next query counts the number of payments in each status, excluding all payments in the AWAIT-

ING_APPROVAL status where the most recent status change was made by the current user. It translates to an SQL
query with two inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAY-

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 45

MENT_STATUS_CHANGE tables.

select count(payment), status.name
from Payment as payment

join payment.currentStatus as status
join payment.statusChanges as statusChange

where payment.status.name <> PaymentStatus.AWAITING_APPROVAL
or (

statusChange.timeStamp = (
select max(change.timeStamp)
from PaymentStatusChange change
where change.payment = payment

)
and statusChange.user <> :currentUser

)
group by status.name, status.sortOrder
order by status.sortOrder

If I would have mapped the statusChanges collection as a list, instead of a set, the query would have been
much simpler to write.

select count(payment), status.name
from Payment as payment

join payment.currentStatus as status
where payment.status.name <> PaymentStatus.AWAITING_APPROVAL

or payment.statusChanges[maxIndex(payment.statusChanges)].user <> :currentUser
group by status.name, status.sortOrder
order by status.sortOrder

However the query would have been HQL specific.

The next query uses the MS SQL Server isNull() function to return all the accounts and unpaid payments for
the organization to which the current user belongs. It translates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANIZATION and
ORG_USER tables.

select account, payment
from Account as account

join account.holder.users as user
left outer join account.payments as payment

where :currentUser = user
and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)

order by account.type.sortOrder, account.accountNumber, payment.dueDate

7.13. Bulk UPDATE & DELETE Statements

Hibernate now supports UPDATE and DELETE statements in HQL/EJB-QL. See Section 6.1, “Bulk update/de-
lete” for details.

7.14. Tips & Tricks

To order a result by the size of a collection, use the following query:

select usr.id, usr.name
from User as usr

left join usr.messages as msg
group by usr.id, usr.name
order by count(msg)

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 46

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.messages) >= 1

If your database doesn't support subselects, use the following query:

select usr.id, usr.name
from User usr.name

join usr.messages msg
group by usr.id, usr.name
having count(msg) >= 1

As this solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

select usr.id, usr.name
from User as usr

left join usr.messages as msg
group by usr.id, usr.name
having count(msg) = 0

EJB-QL: The Object Query Language

Hibernate 3.3.2.GA 47

Chapter 8. Native query
You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as query hints or the CONNECT BY option in Oracle. It also provides a clean
migration path from a direct SQL/JDBC based application to Hibernate. Note that Hibernate3 allows you to
specify handwritten SQL (including stored procedures) for all create, update, delete, and load operations
(please refer to the reference guide for more information.)

8.1. Expressing the resultset

To use a SQL query, you need to describe the SQL resultset, this description will help the EntityManager to
map your columns onto entity properties. This is done using the @SqlResultSetMapping annotation. Each
@SqlResultSetMapping has a name wich is used when creating a SQL query on EntityManager.

@SqlResultSetMapping(name="GetNightAndArea", entities={
@EntityResult(name="org.hibernate.test.annotations.query.Night", fields = {

@FieldResult(name="id", column="nid"),
@FieldResult(name="duration", column="night_duration"),
@FieldResult(name="date", column="night_date"),
@FieldResult(name="area", column="area_id")

}),
@EntityResult(name="org.hibernate.test.annotations.query.Area", fields = {

@FieldResult(name="id", column="aid"),
@FieldResult(name="name", column="name")

})
}

)

//or
@SqlResultSetMapping(name="defaultSpaceShip", entities=@EntityResult(name="org.hibernate.test.annotations.query.SpaceShip"))

You can also define scalar results and even mix entity results and scalar results

@SqlResultSetMapping(name="ScalarAndEntities",
entities={

@EntityResult(name="org.hibernate.test.annotations.query.Night", fields = {
@FieldResult(name="id", column="nid"),
@FieldResult(name="duration", column="night_duration"),
@FieldResult(name="date", column="night_date"),
@FieldResult(name="area", column="area_id")

}),
@EntityResult(name="org.hibernate.test.annotations.query.Area", fields = {

@FieldResult(name="id", column="aid"),
@FieldResult(name="name", column="name")

})
},
columns={

@ColumnResult(name="durationInSec")
}

)

The SQL query will then have to return a column alias durationInSec.

Please refer to the Hibernate Annotations reference guide for more information about @SqlResultSetMapping.

8.2. Using native SQL Queries

TODO: This sounds like a dupe...

Hibernate 3.3.2.GA 48

Now that the result set is described, we are capable of executing the native SQL query. EntityManager

provides all the needed APIs. The first method is to use a SQL resultset name to do the binding, the second one
uses the entity default mapping (the column returned has to have the same names as the one used in the map-
ping). A third one (not yet supported by Hibernate entity manager), returns pure scalar results.

String sqlQuery = "select night.id nid, night.night_duration, night.night_date, area.id aid, "
+ "night.area_id, area.name from Night night, Area area where night.area_id = area.id "
+ "and night.night_duration >= ?";

Query q = entityManager.createNativeQuery(sqlQuery, "GetNightAndArea");
q.setParameter(1, expectedDuration);
q.getResultList();

This native query returns nights and area based on the GetNightAndArea result set.

String sqlQuery = "select * from tbl_spaceship where owner = ?";
Query q = entityManager.createNativeQuery(sqlQuery, SpaceShip.class);
q.setParameter(1, "Han");
q.getResultList();

The second version is useful when your SQL query returns one entity reusing the same columns as the ones
mapped in metadata.

8.3. Named queries

Native named queries share the same calling API than EJB-QL named queries. Your code doesn't need to know
the difference between the two. This is very useful for migration from SQL to EJB-QL:

Query q = entityManager.createNamedQuery("getSeasonByNativeQuery");
q.setParameter(1, name);
Season season = (Season) q.getSingleResult();

Native query

Hibernate 3.3.2.GA 49

	Hibernate EntityManager
	Table of Contents
	Introducing EJB3 Persistence
	Chapter 1. Architecture
	1.1. Definitions
	1.2. EJB container environment
	1.2.1. Container-managed entity manager
	1.2.2. Application-managed entity manager
	1.2.3. Persistence context scope
	1.2.4. Persistence context propagation

	1.3. Java SE environments

	Chapter 2. Setup and configuration
	2.1. Setup
	2.2. Configuration and bootstrapping
	2.2.1. Packaging
	2.2.2. Bootstrapping

	2.3. Event listeners
	2.4. Obtaining an EntityManager in a Java SE environment
	2.5. Various

	Chapter 3. Working with objects
	3.1. Entity states
	3.2. Making objects persistent
	3.3. Loading an object
	3.4. Querying objects
	3.4.1. Executing queries
	3.4.1.1. Projection
	3.4.1.2. Scalar results
	3.4.1.3. Bind parameters
	3.4.1.4. Pagination
	3.4.1.5. Externalizing named queries
	3.4.1.6. Native queries
	3.4.1.7. Query hints

	3.5. Modifying persistent objects
	3.6. Modifying detached objects
	3.7. Automatic state detection
	3.8. Deleting managed objects
	3.9. Flush the persistence context
	3.9.1. In a transaction
	3.9.2. Outside a transaction

	3.10. Transitive persistence
	3.11. Locking

	Chapter 4. Transactions and Concurrency
	4.1. Entity manager and transaction scopes
	4.1.1. Unit of work
	4.1.2. Long units of work
	4.1.3. Considering object identity
	4.1.4. Common concurrency control issues

	4.2. Database transaction demarcation
	4.2.1. Non-managed environment
	EntityTransaction

	4.2.2. Using JTA
	4.2.3. Exception handling

	4.3. EXTENDED Persistence Context
	4.3.1. Container Managed Entity Manager
	4.3.2. Application Managed Entity Manager

	4.4. Optimistic concurrency control
	4.4.1. Application version checking
	4.4.2. Extended entity manager and automatic versioning
	4.4.3. Detached objects and automatic versioning

	Chapter 5. Entity listeners and Callback methods
	5.1. Definition
	5.2. Callbacks and listeners inheritance
	5.3. XML definition

	Chapter 6. Batch processing
	6.1. Bulk update/delete

	Chapter 7. EJB-QL: The Object Query Language
	7.1. Case Sensitivity
	7.2. The from clause
	7.3. Associations and joins
	7.4. The select clause
	7.5. Aggregate functions
	7.6. Polymorphic queries
	7.7. The where clause
	7.8. Expressions
	7.9. The order by clause
	7.10. The group by clause
	7.11. Subqueries
	7.12. EJB-QL examples
	7.13. Bulk UPDATE & DELETE Statements
	7.14. Tips & Tricks

	Chapter 8. Native query
	8.1. Expressing the resultset
	8.2. Using native SQL Queries
	8.3. Named queries

