OBM

User Guide

&

Release Notes

Table Of Contents
41.
General

42.
Documents for Customers

53.
OBM Modes

64.
OBM Bin Files

75.
Burning OBM

86.
USB Enumeration

97.
Building OBM

91.
General

102.
Command line method

101.
None Trusted & Trusted

113.
Batch method (recommend)

111.
Using the general batch file

122.
Using the individual batch files

148.
Creating pin-mux configuration

159.
Data to OS Loader

151.
General

152.
Mechanism

173.
Parameters

2310.
OBM MODES

231.
Operational Mode

232.
Debug Mode

2411.
Release Notes

241.
OBM version 8

242.
OBM version 9

243.
OBM version 10

244.
OBM version 11

245.
OBM version 12

256.
OBM version 13

257.
OBM version 14

258.
OBM version 15

259.
OBM version 16

2610.
OBM version 17

2611.
OBM version 18

2612.
OBM version 19

2613.
OBM version 20

2714.
OBM version 21

2715.
OBM version 22

2816.
OBM version 23

2817.
OBM version 24

2818.
OBM version 25

2819.
OBM version 26

2820.
OBM version 27

2921.
OBM version 28

2922.
OBM version 29

2923.
OBM version 30

2924.
OBM version 31

3025.
OBM version 32

3026.
OBM version 33

3027.
OBM version 34 (V-7.5)

3028.
OBM version 35

3129.
OBM version 36

3130.
OBM version 37

3131.
OBM version 37+

3232.
OBM version 38 (V-7.7)

3233.
OBM version 39

3234.
OBM version 40

3335.
OBM version 41

3336.
OBM version 42

3337.
OBM version 43

3338.
OBM version 44

3439.
OBM version 45

3440.
OBM version 46 (V-8)

3541.
OBM version 47

3542.
OBM version 48

3543.
OBM version 49

3644.
OBM version 50

3645.
OBM version 51

3646.
OBM version 52 VL8a

3747.
OBM version 53

1. General

1. The last OBM label is = PTK_WTPTP_TAVOR_B0_00.53.

a. The OBM code is from \tavor_obm\OBM.

b. This version includes batch build environment.

User must to:

1. Take the RBOOT code from \tavor_obm\RBOOT\.
The last RBOOT label is = Tavor_Rboot-01.00.17.

2. Take the IPPCP dll files from
the above OBM label -- \tavor_obm\Binaries\.

3. Take the application bin files from
the above OBM label -- \tavor_obm\app_bin\.

2. Documents for Customers
Extranet link: My Products > Cellular & Handheld Solutions > Applications Processors > PXA310 (Monahans LV) > Boot ROM

1. MV-S800594-00_WTP_PortingGuide.pdf

2. MV-S400133_WTP_UserGuide-00.pdf

3. OBM Modes

	Modes:
	Comment

	0 - Operational Phone
	COMM + APPS customized by customer.

	1 - Platform Debug
	Full system with ICAT over SSP, IML and ISPT support

	2 - L1 Debug ASPEC
	L1 Debug mode with ASPEC, GSM_MM and ICAT over SSP

	DDR
	Basically the BootRom is loading the OBM image to the SRAM.

In this mode – DDR, the BootRom will load the OBM image directly to the DDR instead of SRAM. To allow this mode user has to use a special NTIM/TIM text file which includes a “command” indicate loading to DDR.

	
	

4. OBM Bin Files

The OBM has many bin files which distinguish by the file name. The files names are composed of some words which describes the content of the bin file.

1. The first word describes the project we are working on like TAVOR.

2. The second word describes the board type. For now we have some boards:

a. EVB

– this is for Tavor P on EVB.

b. EVB_PV
– this is for Tavor PV on EVB.

c. SAAR

– this is for Tavor P on SAAR version 2.5 and 2.6.

d. SAAR_PV
– this is for Tavor PV on SAAR version 2.6
e. YARDEN

3. The third word describes if we run with trusted mode (TOBM) or Non-trusted mode (NTOBM).

4. The fourth word describes the flash type:
a. NAND8 – NAND 8 bits.
b. NAND16 – NAND 16 bits.
c. ONENAND.

d. MDOC.

5. The fifth word describes the pin-mux mode. We have 5 operational modes from 0 until 4, and one for debug called mode 6. Not all the of the operation mode are in used. Basically the mode purpose is as follow:
a. Mode 0 is used for operational phone – Comm and Apps customized by customer.
b. Mode 1 is used for platform debug – Full system with ICAT over SSP, IML and ISPT support.

c. Mode 2 is used for L1 debug ASPEC – L1 Debug mode with ASPEC, GSM_MM and ICAT over SSP.

6. There is a sixth word which can be found on some of the bin files. This word is indicates if the OBM will be loaded to the SRAM and run from it, or if the OBM will be loaded directly to the DDR and run from it. The last option is indicate by the word DDR in the file name.
· An Example for the above description
The bin file with the name TAVOR_EVB2_NTOBM_NAND8_MODE1
is bin file which is good for TAVOR project, on EVB board, running in a Non-Trusted mode, with NAND 8 bits flash, and pin-mux of mode 1.
In addition to the above, the OBM has one more option which is not being reflected in the file name, this is the block number which the OBM will be burned to.
For that we have a separate directory called BLK1 in each \board\flash directory. In this directory user will found all the OBM bin files related to block number 1. The other bin files are related to block number 0.
5. Burning OBM

As a results of moving to the OBM V3 and be compatible with WinCe, we added a new image to the RTOS environment called RBOOT. This image is the third stage after the BootRom and the OBM and it responsible to load the Boerne image to the DDR from the Flash.

There are two types of RBOOT image:

1. TAVOR_RBOOT_ALL_SRAM_APPS.bin.rnd – SRAM used by APPS

2. TAVOR_RBOOT_ALL_SRAM_COMM.bin.rnd – SRAM used by COMM.

As in the past, there are two options to burn our images to the flash – by the NORDHEIM debugger or by the Flash Burn utility.

To those who using the NORDHEIM debugger we added new FCF file to allow the RBOOT burning and changed the Boerne FCF file. (To the new flash address).

These two FCF will be delivering by Igor/Israel in the release directory.

To those who using the Flash Burn utility, we added a new entry called EBOOT. The using of this entry is as the other entries. Below is snapshot of this new utility:

This utility can be found at –
\\Ptscifsc102\tavor_releases\TAVOR0X.XXX\Tools\FlushBurn.exe
[image: image1.png]
Note:

1. Running the new OBM/RBOOT in the first time, a USB wizard will be popup. To avoid this popup in the future, use the MHJTAG.SYS and MHJTAG.INF files which will be delivering by Igor/Israel in the release directory.

2. To burn the Boerne image use the file with the RND extension else it will not work.
6. USB Enumeration
Until OBM version 39 the USB enumeration was activated automatically at the BootRom stage and at OBM startup stage.
Starting form OBM version 40, the USB enumeration activation can be determinate by the user. Meaning if it will be activated automatically at BootRom and at OBM startup, activated at the OBM startup stage, or while user is pressing on the SW download keypad key.
For that we made some changes as follow:
1. The TIM/NTIM text files have been change by adding a new reserved data section which disables the USB enumeration at the BootRom stage.
2. In the OBM code we have added a new flag in the Tim.h file called – DISABLE_DEFAULT_USB_ENUM.
This flag determinate if the USB enumeration will be perform automatically at any time the OBM is up (The flag is not defined), or only when the user is pressing the SW download keypad key (The flag is defined).
7. Building OBM

1. General
· Updates for Table 3 in WTP Porting Guide:

· New directory: \Tavor\Tbb_bin - TIM/NTIM text files and TIM/ NTIM bin files.

· padAndPack.pl - a Perl script that packs the TIM\NTIM images with TOBM\NTOBM images.
· New directory: \Tavor\pin_mux - includes all spread sheets & batch files for muxing configuration
· Make sure you have the nmake.exe file.

· Make sure you have the file TBB.exe for the Trusted mode and NTBB.exe for the Non-Trusted mode.
· We have a text files for each mode (Trusted/Non-Trusted) and for each flash type (MDOC, NAND8, ONENAND…). Also we have a text files to allow loading the OBM image directly to the DDR instead of SRAM, these text files includes the word DDR in it name. The location of all these text files is in the directory -- \TAVOR\tbb_bin_blk1\.
These files include some parameters regarding the images we use. One of them is the name and path of the images to be burn to the flash.
User must update these files with the correct file name and path.
2. Command line method
1. None Trusted & Trusted

· EXTRANET link: My Products > Cellular & Handheld Solutions > Applications Processors > PXA310 (Monahans LV) > Boot ROM

· MV-S800594-00_WTP_PortingGuide.pdf - chapter 4.4 & 9.4.

· Additional information for building the OBM:

· Building OBM for None Trusted Command line syntax use the following line:

· nmake NTOBM.mak PLATFORM=TAVOR FLASH_TYPE=(NAND8,ONENAND,MDOC) OBM_MODE=(0,1,2) BOARD_TYPE= (B0,B0_ULPI,YARDEN) MSYS=(0,1) ONENAND=(0,1) NAND=(0,1)

· Building OBM for Trusted Command line syntax use the following line:

· nmake TOBM.mak PLATFORM=TAVOR FLASH_TYPE=(NAND8,ONENAND,MDOC) OBM_MODE=(0,1,2) BOARD_TYPE= (B0,B0_ULPI,YARDEN) MSYS=(0,1) ONENAND=(0,1) NAND=(0,1)

· After creating the OBM image need to pack it with the TIM/NTIM image, this is done with
padAndPack.pl.

· call Perl padAndpack.pl (OBM image) (TIM/NTIM image)

· For TIM/NTIM create image use the reference at: \Tavor\Tbb_bin – TIM/NTIM examples.

3. Batch method (recommend)
General (compiling OBM environments):
 Compiling the OBM with debug information:

 In NTOBM.mak change:

 RELEASE = 0 #for debug version set it to zero
1. Make sure you have Active Perl -> Install \\ptk-sys01\Software\Public

2. Make sure you have STD2.0.1 for RBOOT and STD2.1 for OBM

· SDT2.0.1 located at: ..\Program Files\Intel\SDT2.0.1
· SDT2.1 located at: ..\ProgramFiles\MARVELL\SDT2.1
· Install SDT from: \\Ptscifsc102\hermonplatform_wcdma\wbcdma\DP\Tools\NordHeim
3. Create directory C:\code\tboot.

4. Copy from \\pt-dtl0037\code\tboot all files.
5. Take the NMAKE.exe from c:\code\tboot and copy it to C:\WINDOWS.
6. Copy from clear case \tavor_obm\OBM the sources of the OBM version that you want to c:\code\tboot\obm.

7. Open a CMD window and change directory to c:\code\tboot\obm -> win_make_release.bat -> press space bar and help text will appear.

· User must build TBB.exe file according to porting and user guides. Place this file under \TBB\Debug\.

· User must build all images (Harebell, Boerne, GB and RBOOT/EBOOT) for TIM/NTIM build.

· User must update related TIM/NTIM with the encryption keys, path to the images. (Please read the porting and user guide before doing that)
· Pay attention that the batch file finish successfully without errors especially that TTB.exe created the TIM/NTIM successfully.

1. Using the general batch file

In this method we have only one batch file that will call to the individual batch file according to the user parameters.

The batch file is called – win_make_release.bat for windows and lin_make_release.sh for LINUX. This batch file gets a variable parameters and it can be at most of 5 parameters as follow:

win_make_release.bat TrustedMode ALL/BoardType FlashType ObmMode Special
a. TrustedMode – NT or T

b. ALL – ALL or the next parameter – see paragraph C.

c. BoardType – EVB_PV or P65 or YARDEN or SAAR or SAAR_PV or EVB
d. FlashType – NAND8 or ONENAND or MDOC or NOR or NOFLASH or NAND16
e. ObmMode – MODE0 or MODE1 or MODE2 or MODE3 or MODE4

f. Special – DDR or SRAM or space.

Note:

DDR means the OBM will be copy directly to DDR instead of SRAM.
Block0 means the OBM will reside in flash in block 0. The default is 1.
SRAM means the OBM will run from SRAM and will not be copy to the DDR.

Here are some commands for example:

a. win_make_release.bat NT ALL

b. win_make_release.bat NT ALL EVB
c. win_make_release.bat T EVB NAND8 MODE1
d. win_make_release.bat NT EVB NAND8 MODE1
e. win_make_release.bat NT SAAR ONENAND MODE0
f. win_make_release.bat NT EVB_PV NAND8 MODE0 DDR
g. win_make_release.bat NT EVB NAND8 MODE0 DDR
h. win_make_release.bat NT YARDEN NAND8 MODE1
i. win_make_release.bat NT ALL BLOCK0

2. Using the individual batch files

1. None Trusted:

· Making an OBM version is based on the board we have and the pin-mux configuration.

· OBM environment:
Before starting to make an OBM version, user has to copy the OBM code from the ClearCase to the local disk. The OBM code can be found in the ClearCase under the Tavor_obm\OBM while the Stream is ptk_wtptp_tavor. (Make sure to take the latest OBM version).

· Make an OBM version:
for each board/flash we have a batch file that make an OBM version as follow:

· win_make_EVB_ntobm_release.bat – This batch file make an OBM version for the Tavor P on EVB board and it got two parameters:

· Flash Type – A legal type are – NAND8, ONENAND, MDOC.

· Obm Mode – A legal mode are – MODE0, MODE1, MODE2.

· Board Type – A legal board type are – EVB, YARDEN, EVB_PV, SAAR, SAAR_PV.

· User must insert the parameters other wise an error message will display.

· win_make_yarden_ntobm_release.bat – This batch file make an OBM version for the YARDEN board. The using of this batch is the same as the above.

· win_make_EVB_PV_ntobm_release.bat – This batch file make an OBM version for the Tavor P on EVB board. The using of this batch is the same as the above.

2. Trusted:

· Make an OBM version:
for each board/flash we have a batch file that make an OBM version as follow:

· win_make_EVB_Tobm_release.bat – This batch file make a Trusted OBM version for the Tavor B0 board and it got two parameters:

· Flash Type – A legal type are – NAND8, ONENAND, MDOC.

· Obm Mode – A legal mode are – MODE0, MODE1, MODE2.

· Board Type – A legal board type are – EVB, YARDEN, EVB_PV, SAAR, SAAR_PV.

· User must insert the parameters other wise an error message will be display.

8. Creating pin-mux configuration
The pin-mux configuration is based on the chip we have. The goal of this action is to create H file to be compile with the OBM. For that we have an Excel file for each chipset\board type which creates the specific H file.
The steps to create this H file are:
1. Make sure you made the OBM environment describe above.

2. Open a command window.

3. Change the directory to – \Tavor\pin_mux.

4. Mapping the \Tavor\pin_mux\ directory to any drive by running the batch file map_drive.bat. This batch file must get one parameter which is the drive letter you want. (Example – map_drive.bat g).

5. Execute the \Tavor\pin_mux\prepareForRunMode.bat.

6. Choose & open the specific excel file.

7. Press on the “Platform Config” sheet.

8. Press on the “Generate OBM” button.

9. At the end of this process you will have a new H file in the – \Tavor\pin_mux\Inc\ directory.

Note:
This action must be done for the first time user compile the OBM and each time the Excel file has changed.

9. Data to OS Loader

1. General

This chapter describes the mechanism that allows transferring information from the OBM to the upper level – the OS loader.
For each board the OBM has the knowledge to identify the hardware environment and the components that are assembled on board. Today some of this knowledge is determinate by a compilation switches and some of them by reading unique register.

Because this information is necessary to the OS loader, the supplementation of this feature to the OBM will help the OS loader to determine about the action that should be done in the OS loader stage and will avoid a duplicate action in the OS loader which already have be done in the OBM stage.
The information that will be transfer to the OS loader is defining in the enum called OBM_TO_OS_ID and it can be found in the paragraph 3 below.
2. Mechanism
The information to the OS loader will be transfer by a 32 bit buffer in a dedicate address in the DDR. The OBM will write to this buffer all the information regarding the components on board and the hardware environment.
The buffer will include an entry for each component. Each entry will include three fields – first the component ID, than the data amount and than the data itself. Each component will include at least one data except of the terminator which will not include any data.
In addition, the buffer will include two dedicated number, a signature at the beginning of the buffer and a terminator at the end of the data.
The signature ID will be written to the buffer by the OBM after all the entries in the buffer were updated including the termination.
For each component we have a dedicated ID that composes of four ASCII code – total of 32 bits, and can be found in the paragraph 3 below. This is good for debugging. In this way we could read the information through the memory dump.
In the buffer we also have a field called version. This version will be change each time the data format will be change.

The OBM at the end of running will inform the OS loader about the buffer memory address. For that and for flexibility the OBM will passing the buffer location through the CPU register number 11.
The OS loader will first check for the signature. If the signature does not exist the OS loader will display an error message through the UART and will assert.

Because the OBM and RBOOT are running in a single task, and no one can interfere them, we found that there is no need for checksum field in buffer.

· The buffer chart will looks as follow:
	Entry
	Data

	
	Buffer Signature ID

	
	Version

	
	Reserved

	
	Reserved

	1
	Entry_1 ID

	
	Entry _1 Data amount

	
	Entry _1 Data 1

	
	

	
	Entry _1 Data n

	2
	Entry _2 ID

	
	Entry _2 Data amount

	
	Entry _2 Data 1

	
	

	
	Entry _2 Data n

	3
	Entry _3 ID

	
	Entry _3 Data amount

	
	Entry _3 Data 1

	
	

	
	Entry _3 Data n

	
	Buffer Terminator ID

NOTE:

Each data in the buffer is 32 bits.

3. Parameters
This paragraph describes all the component and parameters which will be transfer to the OS loader by the OBM. These parameters should be defined in H file in the OS loader and OBM directory.
IMPORTANT:

Each of the components has only one data unless it was written explicitly.
#define

OBM_OS_DATA_VERSION
(0x00000001)

typedef struct

{

unsigned long

signature;

unsigned long

version;

unsigned long

reserved1;

unsigned long

reserved2;

} OBM_OS_DATA_HEADER;

#define OBM_OS_BUFFRE_HEADER_SIZE (sizeof (OBM_OS_DATA_HEADER))

· The component ID are:

typedef enum

{

BOARD_ENTRY

= 0x424F4152,
// BOAR

CHIP_ENTRY

= 0x43484950,
// CHIP

DDR_BANK_ENTRY

= 0x44445242,
// DDRB

DDR_SIZE_ENTRY

= 0x44445253,
// DDRS

FLASH_ENTRY

= 0x464C4153,
// FLAS

GPS_AVAILABLE_ENTRY

= 0x47505341,
// GPSA

MICCO_ENTRY

= 0x4D494343,
// MICC

MMC_TYPE_ENTRY

= 0x4D4D4354,
// MMCT

MVED_EXIST_ENTRY

= 0X4D564544,
// MVED

OBM_VERSION_ENTRY

= 0x4F424D56,
// OBMV

PIN_MUX_MODE_ENTRY

= 0x50494E4D,
// PINM

PRODUCT_MODE_TYPE_ENTRY= 0x50524F44,
// PROD

DATA_TERMINATOR_ID

= 0x5445524D,
// TERM

DATA_SIGNATURE_ID

= 0x544C5653
// TLVS

USB_TYPE_ENTRY

= 0x55534254,
// USBT

WAKEUP_REASON_ENTRY
= 0x57414B45
// WAKE

} OBM_TO_OS_ID;
NOTE:
As mention before in paragraph 2 each of the components ID is composes of four ASCII code. This is good for debugging.
· The board type are:
typedef enum

{

OBM_EVB_P_BOARD,

OBM_EVB_PV_BOARD,

OBM_SAAR_2_5_BOARD,

OBM_SAAR_2_6_BOARD,

OBM_SAAR_PV_BOARD,

OBM_YARDEN_BOARD,

OBM_P65_BOARD,

MAX_BOARD_TYPE

} OBM_BOARD_TYPE;

· The Tavor chip type are:

typedef enum

{

CPU_TAVOR_A0,

CPU_TAVOR_B0,

CPU_TAVOR_B1,

CPU_TAVOR_B2,

CPU_TAVOR_PV_DIS_Z0,

CPU_TAVOR_PV_DIS_A0,

CPU_TAVOR_PV_DIS_B0,

CPU_TAVOR_PV_DIS_C0,

CPU_TAVOR_PV_POP_Z0,

CPU_TAVOR_PV_POP_A0,

CPU_TAVOR_PV_POP_B0,

CPU_TAVOR_PV_POP_C0,

CPU_TAVOR_P65_Z0,

CPU_TAVOR_P65_A0,

CPU_TAVOR_P65_B0,

CPU_TAVOR_P65_C0,

CPU_TAVOR_P_PLUS_Z0,

CPU_TAVOR_P_PLUS_A0,

CPU_TAVOR_P_PLUS_B0,

CPU_TAVOR_P_PLUS_C0,

 CPU_OTHER

}CPU_Version;

· typedef enum

{

OBM_64M_BYTES_SIZE
= 1,

OBM_128M_BYTES_SIZE
= 2

} OBM_DdrSise;

· The MICCO chip type are:
typedef enum

{

MICCO_A0
 =
0x00,

MICCO_B0
 =
0x10,

MICCO_C0 =
0x20,

MICCO_EA
 =
0x30,

MICCO_EB
 =
0x31

}
MICCO_TYPE;

· The flash type are:
typedef enum

{

OBM_TYAX_FLASH
 = 1,

OBM_SIBLEY_FLASH
 = 2,

OBM_NAND_FLASH
 = 3,

OBM_ONENAND_FLASH
 = 4,

OBM_MSYS_DOC_FLASH = 5,

OBM_UNKNOWN_FLASH

} OBM_FlashType;

· The OBM version type are:

typedef enum

{

OBM_VER_HIGH_VAL
= 0,

OBM_VER_LOW_VAL
= 1

} OBM_Version;

NOTE – The OBM version is composed of two numbers – high value and low value. For example – OBM version 40 will pass two numbers to the OS loader 0 as the high value and 41 as the low value.
· typedef enum

{

ARSR_HARDWARE_RESET

= 1,

ARSR_WATCHDOG_RESET

= 2,

ARSR_LOW_PWR_MODE_RESET
= 4,

ARSR_GPIO_RESET

= 8

} OBM_WakeupReason;

· typedef enum

{

OBM_GPS_NOT_AVAILABLE
= 0,

OBM_GPS_AVAILABLE

= 1

} OBM_GpsAvailable;

· typedef enum

{

OBM_USB1
 = 0,
 // USB1

OBM_USB2
 = 1, // USB2 - ULPI

OBM_USBCI = 2, // USB CI

OBM_USB1_2 = 3 // USB1 and ULPI --- Only in Tavor P boards.
} OBM_UsbType;

· typedef enum

{

OLD_MMC

= 0,

NEW_MMC

= 1

} OBM_MmcType;

· typedef enum

{

MVED_NOT_EXIST
= 0,

MVED_EXIST

= 1

} OBM_MvedExist;

· typedef enum

{

NORMAL_MODE
= 0,

PRODUCT_MODE
= 1

} OBM_ProductionMode;

· typedef enum

{

OBM_DDR_BANK_1
= 1,

OBM_DDR_BANK_2
= 2

} OBM_DdrBank;

10. OBM MODES

1. Operational Mode

This mode is the default mode which the OBM will run after power on. User doesn’t have to make anything.

In this mode the OBM will load the COMM, GB and E/Rboot from the flash to the DDR, after that the OBM will jump to the E/Rboot address.
Optionally – each OBM image included a default pin-mux setup mode derived from the OBM file name. If user wants to change the pin-mux setup mode in run time, he has to press on one of the keypad 0-4 at startup until he will see the message "User choose mode x” on the uart screen. Anyway user can still use the other method of burning the desired OBM image mode.
2. Debug Mode

This mode is for testing only. If user wants to run this mode he has to press keypad number 6 at power-on until he will see the message “RUNNING DEBUG MODE” on the uart screen.
In this mode the OBM will load special images from the flash to the DDR and SRAM. User must make sure that these special images are burned in the flash before running the OBM in debug mode.
The images addresses are:

1. Flash address:

1. For image 1 at address 0x6F00000 size of 10 blocks.

2. For image 2 at address 0x7040000 size of 1 block.
3. For image 3 at address 0x7060000 size of 1 block.

2. DDR address:

1. For image 1 at address 0x83000000.

2. For image 2 at address 0x83600000.

3. SRAM address:

1. For image 3 at address 0x5c013000 size 0x7000.

 Compiling the OBM with debug information:

 In NTOBM.mak change:

 RELEASE = 0 #for debug version set it to zero
11. Release Notes

1. OBM version 8

This version includes changes for the ULPI board.

a. Added a new Excel file support ULPI.

b. Added batch files.
2. OBM version 9

This version includes changes for the trusted mode as follow:

a. Added some batch files.

b. Added the TIM text files. (These are copy of the NTIM and done for compilation only. User will have to update these text files to be TIM files).

c. Changes the trusted mode make file.

3. OBM version 10

This version includes changes for the trusted mode as follow:

a. Change the TIM text files - add public and privet key

b. Change batch files for trusted mode.

c. Fix bug in the platform_obm.c file.

d. Added TBB.exe file.
4. OBM version 11

This version includes changes as follow:

a. Sync with RC3.

b. Update batch files.

c. Fix for trusted boot.
5. OBM version 12

This version includes changes as follow:

a. Added support of I2C module to communicate with Micco.

b. Change position of the batch files and pin-mux H files.

c. Fix bug in the USIM – the change was done in the XLS files by changing all the USIM pins to be under RDH.
6. OBM version 13
This version includes changes as follow:

a. Added debug mode meaning – at start up if user is pressing keypad number 6, the OBM will insert to debug mode which will allow loading a special code for testing to the DDR. (For more details see DEBUG MODE section).

b. Sync with RC11.

c. Allow user changing the pin-mux mode in run time by pressing keypad from 0 to 4. Each keypad respectively represents the pin-mux mode.
7. OBM version 14
This version includes changes as follow:

a. Added new OBM image version for mode number 6. In this version the OBM will be always in DEBUG MODE from the startup, without the need to press keypad number 6.
In this mode user will not able to change the OBM mode unless he will burn other OBM image mode.

8. OBM version 15
This version includes changes as follow:

a. Turn off the 32 KHz oscillator for Micco C0.

b. Added function to identify the CPU type and print it.

c. Added new function to detect if the debugger is connected or not.

d. Added mode 4 to all batches.

e. Change the mDoc pins to 10mAmp.

f. D2D2 workaround will run only if the debugger is not connected.
If the workaround is running user will see a message on the UART screen.

9. OBM version 16
This version includes changes as follow:

a. Sync with Marlborough latest release.

b. Added option to copy the OBM code directly to the DDR instead of SRAM.

10. OBM version 17
This version includes changes as follow:

a. Change GPIO [55:60] including to be function 2, fast 6ma and sleep control to input– B0_ULPI.

b. Change the flash debug images address for debug mode only.

c. Change GPIO 97,101 and 102 to be fast 6ma – B0_ULPI.

d. Added support in NAND_16 in the make and batch files.

e. Added a primary support in the Tavor PV chip:
i. Added new basic XLS file for the pin-mux.

ii. Added batch files to build the all PV images.

11. OBM version 18
This version includes changes as follow:

a. Changes in the Rboot code and batch files to support PV.

b. Changes in the OBM to support Rboot changes.

c. Added PV pin-mux setup. (pin_mux.c)

d. Added support in PV chip Id.

e. Enable keypad to change OBM mode on ULPI board
12. OBM version 19
This version includes changes as follow:

a. Added support with MICCO charger.

b. Set the DDR CS1 to allow second 64M DDR bank.

c. Added batch files to create OBM NOR flash images.
d. Changing Apps, Comm, and SRAM voltage ramp.

e. Added support with product ID to identify the chip type.

f. Change the BBU images flash address.
13. OBM version 20
This version includes changes as follow:

a. Added support to run without any flash. (For bring-up).
b. Added new Excel file for Edge board.

c. Remove the DFC workaround on PV boards.

d. Move the MICCO WD reset disable command to be earlier and make it endless loop until it will be successes.
e. Added handling with the DDR to support Tavor PV.

f. Remove the delay in the DDR configuration.

g. SAAR Excel has been change as follow

i. For IML.

ii. RF - Add pull down on DSSP Data as well (in all modes).

iii. RF - Add support for powering down ANT SW, in all modes (according to L1).

iv. Changed all UART's TX to pull up + output high
v. Changed many "output low" to "inputs" (whenever "output low" is not really needed).
vi. Updated WLAN settings

h. EVB ULPI Excel has been change for RF and alignment with SAAR.

i. Sync with version – WTPTP_TAVOR_3_0_09_RC3.

j. Added a new function that identifies the chip family, type, version by the product ID.

14. OBM version 21
This version includes changes as follow:

a. Added new API which releases the Gilon from reset.

b. Removed A0 and B0 pin-mux from the code.

c. Removed A0 and B0 bin files from the release.

d. Change the padding in the RND files from 0 to 0xff.

e. Added NTIM text files for the P65.

f. Fix bugs in the DDR related to the PV chip.

g. Added the flag RUN_FROM_SRAM in the code to allow running the OBM form SRAM instead of copy it to DDR
h. Change the TBB/NTBB exe file to be compatible to version WTPTP_TAVOR_3_0_09_RC3.
i. Change the number of packages to 2 in all NTIM text files where we are using reserved area, to be compatible with the new NTIM bin file.

15. OBM version 22
This version includes changes as follow:

a. Fix bug in the DDR driver:
i. Disable the SW calibration in Tavor P to allow exiting from D2 in WinCe.

ii. Incorrect mask register value was used while programming the MDCNFG register in STEP 3.

b. In Tavor PV – added configuration of the AVCR register to allow 1.25 volt to the SRAM.

c. Change the GB identification in all NTIM text files.

d. Change the messages format through the UART.
16. OBM version 23
This version includes changes as follow:

a. Reset the I2C unit each time we get an error while accessing the MICCO watchdog register.

17. OBM version 24
This version includes changes as follow:

a. Added new directory called tbb_bin_blk1 which includes all NTIM text file for the OBM residing in block 1 instead of block 0.
b. Rename all Excel and pin-mux H files, now these file will not include the chip version - like A0, B0…
c. Change the compile switch B0_ULPI to be EVB2, and removed A0 and B0.
d. The compiler mode option has been change from MODE_x to MODEx.
e. Remove all batch files refer to B0, B0_ULPI, D2 and added supporting with new compile options:

i. Block1 or block0.

ii. OBM will reside in the SRAM or will be copy to DDR.

18. OBM version 25
This version includes changes as follow:

a. Sync with version – WTPTP_TAVOR_3_0_09_RC5.

19. OBM version 26
This version includes changes as follow:

a. Change the SAAR pin-mux for power.

b. Change the YARDEN pin-mux to support IML together with ASPEC which will be reflected on mode 4.

c. Change BUCK number 3 in MICCO to be 1.8 volt.
d. Enable RF_GP switch to output. (Command to MICCO).

e. Change LDO number 13 in MICCO to 2.8 volt. (For SD card)

20. OBM version 27
This version includes changes as follow:

a. Return back the old NTBB.exe to bypass the MDOC overlapping error.

b. Change the PV pin-mux for A1. (New chip – bring up)
21. OBM version 28
This version includes changes as follow:
a. Sync to WTPTP_TAVOR_3_0_10_RC2

22. OBM version 29
This version includes changes as follow:

a. Sync to WTPTP_TAVOR_3_0_10_RC3

b. Remove from code the ability to dynamically identify the PV/P65 flavors - ObmGetCpuFamily - now it is hard coded for PV DIS
c. Change EVB pin-mux for SAAR power: GPIO 43 should be set to PWM2
d. PSLEW and NSLEW values are calculated with new values.

e. RCOMP new value.
f. DEBUG_NOR_IMAGE_1_SIZE_IN_BYTES change to 0x00380000
g. Copy Reliable Data area to DDR for IMEI – currently offset 0x100000 (block8).

h. WDT overheating.

i. Flash re-mapping support.
j. RBOOT is compiled with SDT2.0.1 - pay attention.

23. OBM version 30
This version includes changes as follow:
a. Fix of copy Reliable Data area to DDR for IMEI.

b. Mapping fix.

c. Supporting DDR64/128 - dynamic TBD - bin files were created) - xlli_MDCNFG_value in xlli_Board_defs.inc - bin files were created for 128KB.
24. OBM version 31
This version includes changes as follow:

a. Change the SAAR Excel pin-mux for power optimization.
b. Enable USB in the OBM make file.

c. Fix bug in the OneNand driver which was not updating the flash page size in the data base.

d. Configure the gpio61 in SAAR boards to shutdown the GPS.

25. OBM version 32
This version includes changes as follow:

a. Added support on MICCO EB. For now, the changes we made for MICCO EA, will be done in MICCO EB also.

b. Enable reading the BBT area in the OneNand flash.

26. OBM version 33
This version includes changes as follow:

a. Remove the command to BUCK 3 which changes the voltage to 1.8 volt in MICCO EB.
b. Change The YARDEN pin-mux – GPIO27 is input pin gets MAC-E interrupt signal.
c. Change the EVB2 pin-mux as follow:
i. GPIO 2, 4,6,8,10,12 – keypad set edge detect to EDGE_BOTH_ENABLE.

ii. GPIO 14, 15 – Rotary pins support by set AF to 2, EDGE_BOTH_ENABLE.

iii. GPIO55 till 60 the MMC2 drive was change to 3mA.

iv. GPIO97 MMC detect signal was set to detect falling edge for wakeup.

27. OBM version 34 (V-7.5)
This version includes changes as follow:

a. This version is a modification of version 33 by removing all the changes regarding the pin-mux. Meaning version 34 is the same as version 32 with the additional of paragraph ‘a’ of version 33.

28. OBM version 35
This version includes changes as follow:

a. The handling of copy of the reliable data file from flash to DDR which was hard code, has removed from the code. We added a new entry in the NTIM text file, and the copy will be done as other bin files.

b. Handlin of the WDT overheat has been moved to the startup to be more early.
c. Change the reset address of the ARBEL to be 0xD0A00000. This is for the trusted mode.

d. Change all TBB text file to support the new entry for the new reliable data file.
e. Fix the flash address in all NOR TBB text file to be align to 256K bytes.

f. Added new feature which in run time will identify the DDR size – 64 or 128 M bytes.

g. Change the YARDEN pin-mux – set the MAC-E interrupt to be located on GPIO27.
h. Change the SAAR pin-mux to fix the IML problem.
i. Change the EVB pin-mux.
29. OBM version 36
This version includes changes as follow:

a. Added new Excel pin-mux to support SAAR version 2.6.
The SAAR bin file will include two pin-mux setups. The OBM will identify in run time the board type by the MICCO version. If running with MICCO EA that means we are running on SAAR 2.5. If running with MICCO EB that means we are running on SAAR 2.6.
b. Added supporting with new board SAAR PV, for that we added new TV called SAAR_PV.

c. Added new feature which allows remote SW upgrade via USB. Support a new preamble type (in addition to the old preamble) to indicate that the user wants to perform Remote SW Upgrade.
d. Added function which disables the IRDA on SAAR PV and 2.6.

e. Added functions which configure the audio mono and stereo mode on SAAR boards only.

f. Remove the command to MICCO which turn off the 32 KHz.

g. Change the SAAR pin-mux.

30. OBM version 37
This version includes changes as follow:

a. Union the two flash DFC directories P and PV.
b. Change the RBOOT compiler to support SDT2.1.

c. Sync the RBOOT flash directory to the OBM flash directory.

d. On EVB/SAAR with PV chip configure GPIO 144 to be output low. This is to allow the NOR flash.
31. OBM version 37+
This version includes changes as follow:

a. Change SAAR 2.6 and SAAR PV pin-mux – updated sleep configuration of GPIO_51. The changes were done in the pin-mux H file only in mode 0. The pin setup was change to – FULL_SEL_DN and SLEEP_DATA_OUTPT_LOW.

· NOTE – This version was not released officially.
32. OBM version 38 (V-7.7)
This version includes changes as follow:

a. Sync with version – WTPTP_TAVOR_3_0_12_RC2.

b. Change SAAR 2.6 pin-mux – updated sleep configuration of GPIO_51.
c. Change SAAR PV pin-mux – updated sleep configuration of GPIO_51.

d. Added handling with the I2C bus hung.
e. Added a new general function that configures a specific GPIO pins to be output high or low.
f. Added debug information while getting an I2C error. This will display the I2C registers values.

g. Added new function that displays the wakeup reason by reading the ARSR and PSR registers
h. Added new function that clears the BIE bit in the PMCR register.
· NOTE – This version can not be compiling with the NOR flash flag because of bug in the obm_flash.c file.

33. OBM version 39
This version includes changes as follow:

a. Change the OBM flash BLOCK residing default to be block number 1 instead of number 0.
b. Fix the NOR flash bug which was in OBM version 38.

c. Union the OBM make files – NTOBM and TOBM – to a one file called OBM.mak.
d. Fix a bug in the TIM text files regarding the reliable data entry.
e. Added new directory called APP_BIN which will include all the application bin files that needed to create the TIM/NTIM.

f. Change all TIM/NTIM text file to point to the new application bin files path which is now APP_BIN.

g. Fix a bug in the pin-mux definition regarding the drive pin in the MFPR. The correct drive pins in the register are 12:11 and not 11:10.

h. Added a preparation for running from the SRAM in the batch files.

i. Change EVB2 dir/files to EVB, and PV dir/files to EVB_PV.

34. OBM version 40
This version includes changes as follow:

a. Added a new command to MICCO which turn the LCD to off.
b. Disable the USB enumeration in the BootRom stage by adding a reserved data section to the TIM/NTIM.

c. Added a new flag called – DISABLE_DEFAULT_USB_ENUM.
This flag determinate if the USB enumeration will be perform at any time the OBM is up (The flag is not defined), or only when the user is pressing the SW download keypad key (The flag is defined).
d. Activate the USB enumeration while user press the SW download keypad key.

e. Disable the creation of unnecessary bin files.

35. OBM version 41
This version includes changes as follow:

a. Added mechanism to transfer information from the OBM to the OS loader regarding the components on the board.
b. Change the application files in APP_BIN directory to be a dummy files.

36. OBM version 42
This version includes changes as follow:

a. Added new directory called INC under ..\Tavor\. This directory will includes all the H file regarding Tavor.
b. Added support with the new reliable data file format.
37. OBM version 43
This version includes changes as follow:

a. Added some new entries to the data transferred to OS loader as follow:

i. GPS – for now it has a dummy value.

ii. USB – for now it has a dummy value.

iii. Version of the data transfer format.

iv. Reserved.

b. Change the EVB-P pin-mux for Skyworks and audio.

c. Change the SAAR 2.6 and SAAR PV pin-mux for audio.

d. Change The EVB-PV B0 pin-mux for bring-up.

e. Added support with Skyworks – release from reset.

38. OBM version 44
This version includes changes as follow:

a. Change the NTBB exe file to allow reading of relative path in the TBB text files like .\Tavor\ instead of C:\Code\Tboot\...
b. Change all TBB text file to support the new files path format.

c. Added some new entries to the data transferred to OS loader as follow:

i. USB type – we identify the USB type by reading the USB_CI register ID. If the value is 5 we assuming that we have USB CI, otherwise we have USB1.

ii. MVED existence – for now it is depending on the USB type. If we have USB_CI we assuming that the MVED is exist.

iii. MMC type – we identify the MMC type by reading the MMC_CAP0 register.
d. The new entries mention above was added to the RBOOT also.

39. OBM version 45
This version includes changes as follow:

a. Sync OBM directory with version – WTPTP_TAVOR_3_0_15_RC4.
b. Added a new message through the UART indicated that loading of IMEI image failed. (If failed).
c. Change the EVB-PV pin-mux for Skyworks and audio.

d. DDR – removed the SW strobe calibration for Tavor PV. Now the strobe calibration will be done by HW. (HCAL settings: HCPW = 1 and HCOD = 0).
e. Changes in the DDR RCOMP calibration for Tavor PV:

i. PCODE is determined from DMCISR.

ii. NCODE get PCODE.

iii. XCODE is determined from DMCISR2.

f. Added code for the USB_CI (USB2).

g. Disable LDO4 in the MICCO for USIM.

· NOTE – This version has a wake up stability problem because of the DDR changes that were done.
40. OBM version 46 (V-8)
This version includes changes as follow:

a. Remove all the changes regarding the DDR calibration for Tavor PV which were done in version 45.

b. Remove BLK1 directory from the BIN directory.

c. On PV boards – enabling the USB1.1 and USBCI in the make file.

d. Identify of USB1.1 and USBCI will be in run-time.
e. Sync OBM directory with version – WTPTP_TAVOR_3_0_16_RC2.

f. Change the EVB-P pin-mux for USIM hot swap.
· NOTE – On Tavor-PV with USB-CI we have a HW problem of USB cable detection. For now before running SW downloader user will have to disconnect the cable, than run while pressing the ‘*’. After getting the message – “USB cable disconnected... waiting to be connected” through the UART – user will have to connect the USB cable.
41. OBM version 47
This version includes changes as follow:

a. Added support for the new board SAAR PV 3.2. SARR PV bin files will be used for both board type 3.1 and 3.2.
The changes are as follow:

i. New pin-mux.
ii. RF reset release.

iii. Function that identify the new board.

b. The OBM will copy himself to the DDR by the real size and not by fix size. (There were defines, one for Tavor P and one for PV).
c. The OBM will not assert if the IMEI image doesn’t existing in the flash, just generate an error message through the UART.
d. DDR – removed the SW strobe calibration for Tavor PV. Now the strobe calibration will be done by HW. (HCAL settings: HCPW = 1 and HCOD = 0).

e. Changes in the DDR RCOMP calibration for Tavor PV:

i. PCODE is determined from DMCISR.

ii. NCODE get PCODE.

iii. XCODE is determined from DMCISR2.
42. OBM version 48
This version includes changes as follow:

a. Found a workaround to the USBCI HW problem mention in the paragraph of version 46. Now we can startup while the USBCI cable is connected.
b. Allow Skyworks reset release on EVB-PV boards.

c. Added a new entry to the DATA TO OS mechanism indicating if we are in production mode or not.

d. Added a mechanism to identify if we are in production mode.

43. OBM version 49
This version includes changes as follow:

a. Added new feature which read the voltage from the ADC_IN_6 register in MICCO and concludes about the environment.
b. Added code to the reserved area in the NTIM which indicating if we are in production mode or normal mode, or to sample an external device to determine the mode.

c. Changes regarding Tavor B0:

i. Change the AVCR to 0x15151512.

ii. Changes in the DDR.

iii. Turn on the CLK_TOUT.

44. OBM version 50
This version includes changes as follow:

a. Added a workaround to the fuse burn problem on boards with Tavor-P and MICCO EA or higher. The workaround is changing the MICCO voltage to 1.9 volt.
b. The address of the information which the OBM passing to the OS loader has been changed. This was done by the request and consulting of the LINUX team.
c. Added changes for the LINUX environment as follow:

i. Change all the NTIM text files to support UNIX format.
ii. Added some new UNIX scripts to allow compiling the OBM as it is in windows.

iii. The LINUX makefile has been change to allow compilation in the new environment.
iv. Rename files and directories to the lower case to fit UNIX format.

45. OBM version 51
This version includes changes as follow:

a. Added new option that allows Jtag re-enable process be started by pressing the ‘#’ keypad at startup.
b. Added a new entry to the Data To OSL structure indicates the DDR banks number.

c. Fix a bug of memory overlapping in the SRAM, between the stack and the NTIM.

d. Fix bug while getting an error message by calling to OBMFinalize function and running the software downloader.

· NOTE – The USBCI in this version does not work in the LINUX environment.
46. OBM version 52 VL8a
This version includes changes as follow:

a. Enable the USBCI in the LINUX environment.
b. Fix a bug in trusted mode while trying to make JTAG re-enable. This was done in the assumption that the OBM has to get the TIM from the user by the external tool
c. Removed the prefix LINUX from all OBM bin files name.

47. OBM version 53
This version includes changes as follow:

a. Fix a bug in the USBCI driver, this cause un-handling of new event while we are handling the previously event.
b. Added new feature which allow unlocking of the SRAM upper partition up to 28K bytes.
c. Added handling of the Jtag re-enable with the external tool.
d. Sync TBB directory with version – WTPTP_TAVOR_3_0_16_RC2.
PAGE
37

