/////////////////////////////////////////////////////////////////////////////// // /// \file coder.c /// \brief Compresses or uncompresses a file // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "private.h" /// Return value type for coder_init(). enum coder_init_ret { CODER_INIT_NORMAL, CODER_INIT_PASSTHRU, CODER_INIT_ERROR, }; enum operation_mode opt_mode = MODE_COMPRESS; enum format_type opt_format = FORMAT_AUTO; bool opt_auto_adjust = true; bool opt_single_stream = false; uint64_t opt_block_size = 0; uint64_t *opt_block_list = NULL; /// Stream used to communicate with liblzma static lzma_stream strm = LZMA_STREAM_INIT; /// Filters needed for all encoding all formats, and also decoding in raw data static lzma_filter filters[LZMA_FILTERS_MAX + 1]; /// Input and output buffers static io_buf in_buf; static io_buf out_buf; /// Number of filters. Zero indicates that we are using a preset. static uint32_t filters_count = 0; /// Number of the preset (0-9) static uint32_t preset_number = LZMA_PRESET_DEFAULT; /// Integrity check type static lzma_check check; /// This becomes false if the --check=CHECK option is used. static bool check_default = true; #ifdef MYTHREAD_ENABLED static lzma_mt mt_options = { .flags = 0, .timeout = 300, .filters = filters, }; #endif extern void coder_set_check(lzma_check new_check) { check = new_check; check_default = false; return; } static void forget_filter_chain(void) { // Setting a preset makes us forget a possibly defined custom // filter chain. while (filters_count > 0) { --filters_count; free(filters[filters_count].options); filters[filters_count].options = NULL; } return; } extern void coder_set_preset(uint32_t new_preset) { preset_number &= ~LZMA_PRESET_LEVEL_MASK; preset_number |= new_preset; forget_filter_chain(); return; } extern void coder_set_extreme(void) { preset_number |= LZMA_PRESET_EXTREME; forget_filter_chain(); return; } extern void coder_add_filter(lzma_vli id, void *options) { if (filters_count == LZMA_FILTERS_MAX) message_fatal(_("Maximum number of filters is four")); filters[filters_count].id = id; filters[filters_count].options = options; ++filters_count; // Setting a custom filter chain makes us forget the preset options. // This makes a difference if one specifies e.g. "xz -9 --lzma2 -e" // where the custom filter chain resets the preset level back to // the default 6, making the example equivalent to "xz -6e". preset_number = LZMA_PRESET_DEFAULT; return; } static void lzma_attribute((__noreturn__)) memlimit_too_small(uint64_t memory_usage) { message(V_ERROR, _("Memory usage limit is too low for the given " "filter setup.")); message_mem_needed(V_ERROR, memory_usage); tuklib_exit(E_ERROR, E_ERROR, false); } extern void coder_set_compression_settings(void) { // The default check type is CRC64, but fallback to CRC32 // if CRC64 isn't supported by the copy of liblzma we are // using. CRC32 is always supported. if (check_default) { check = LZMA_CHECK_CRC64; if (!lzma_check_is_supported(check)) check = LZMA_CHECK_CRC32; } // Options for LZMA1 or LZMA2 in case we are using a preset. static lzma_options_lzma opt_lzma; if (filters_count == 0) { // We are using a preset. This is not a good idea in raw mode // except when playing around with things. Different versions // of this software may use different options in presets, and // thus make uncompressing the raw data difficult. if (opt_format == FORMAT_RAW) { // The message is shown only if warnings are allowed // but the exit status isn't changed. message(V_WARNING, _("Using a preset in raw mode " "is discouraged.")); message(V_WARNING, _("The exact options of the " "presets may vary between software " "versions.")); } // Get the preset for LZMA1 or LZMA2. if (lzma_lzma_preset(&opt_lzma, preset_number)) message_bug(); // Use LZMA2 except with --format=lzma we use LZMA1. filters[0].id = opt_format == FORMAT_LZMA ? LZMA_FILTER_LZMA1 : LZMA_FILTER_LZMA2; filters[0].options = &opt_lzma; filters_count = 1; } // Terminate the filter options array. filters[filters_count].id = LZMA_VLI_UNKNOWN; // If we are using the .lzma format, allow exactly one filter // which has to be LZMA1. if (opt_format == FORMAT_LZMA && (filters_count != 1 || filters[0].id != LZMA_FILTER_LZMA1)) message_fatal(_("The .lzma format supports only " "the LZMA1 filter")); // If we are using the .xz format, make sure that there is no LZMA1 // filter to prevent LZMA_PROG_ERROR. if (opt_format == FORMAT_XZ) for (size_t i = 0; i < filters_count; ++i) if (filters[i].id == LZMA_FILTER_LZMA1) message_fatal(_("LZMA1 cannot be used " "with the .xz format")); // Print the selected filter chain. message_filters_show(V_DEBUG, filters); // The --flush-timeout option requires LZMA_SYNC_FLUSH support // from the filter chain. Currently threaded encoder doesn't support // LZMA_SYNC_FLUSH so single-threaded mode must be used. if (opt_mode == MODE_COMPRESS && opt_flush_timeout != 0) { for (size_t i = 0; i < filters_count; ++i) { switch (filters[i].id) { case LZMA_FILTER_LZMA2: case LZMA_FILTER_DELTA: break; default: message_fatal(_("The filter chain is " "incompatible with --flush-timeout")); } } if (hardware_threads_get() > 1) { message(V_WARNING, _("Switching to single-threaded " "mode due to --flush-timeout")); hardware_threads_set(1); } } // Get the memory usage. Note that if --format=raw was used, // we can be decompressing. const uint64_t memory_limit = hardware_memlimit_get(opt_mode); uint64_t memory_usage; if (opt_mode == MODE_COMPRESS) { #ifdef MYTHREAD_ENABLED if (opt_format == FORMAT_XZ && hardware_threads_get() > 1) { mt_options.threads = hardware_threads_get(); mt_options.block_size = opt_block_size; mt_options.check = check; memory_usage = lzma_stream_encoder_mt_memusage( &mt_options); if (memory_usage != UINT64_MAX) message(V_DEBUG, _("Using up to %" PRIu32 " threads."), mt_options.threads); } else #endif { memory_usage = lzma_raw_encoder_memusage(filters); } } else { memory_usage = lzma_raw_decoder_memusage(filters); } if (memory_usage == UINT64_MAX) message_fatal(_("Unsupported filter chain or filter options")); // Print memory usage info before possible dictionary // size auto-adjusting. message_mem_needed(V_DEBUG, memory_usage); if (opt_mode == MODE_COMPRESS) { const uint64_t decmem = lzma_raw_decoder_memusage(filters); if (decmem != UINT64_MAX) message(V_DEBUG, _("Decompression will need " "%s MiB of memory."), uint64_to_str( round_up_to_mib(decmem), 0)); } if (memory_usage <= memory_limit) return; // If --no-adjust was used or we didn't find LZMA1 or // LZMA2 as the last filter, give an error immediately. // --format=raw implies --no-adjust. if (!opt_auto_adjust || opt_format == FORMAT_RAW) memlimit_too_small(memory_usage); assert(opt_mode == MODE_COMPRESS); #ifdef MYTHREAD_ENABLED if (opt_format == FORMAT_XZ && mt_options.threads > 1) { // Try to reduce the number of threads before // adjusting the compression settings down. do { // FIXME? The real single-threaded mode has // lower memory usage, but it's not comparable // because it doesn't write the size info // into Block Headers. if (--mt_options.threads == 0) memlimit_too_small(memory_usage); memory_usage = lzma_stream_encoder_mt_memusage( &mt_options); if (memory_usage == UINT64_MAX) message_bug(); } while (memory_usage > memory_limit); message(V_WARNING, _("Adjusted the number of threads " "from %s to %s to not exceed " "the memory usage limit of %s MiB"), uint64_to_str(hardware_threads_get(), 0), uint64_to_str(mt_options.threads, 1), uint64_to_str(round_up_to_mib( memory_limit), 2)); } #endif if (memory_usage <= memory_limit) return; // Look for the last filter if it is LZMA2 or LZMA1, so we can make // it use less RAM. With other filters we don't know what to do. size_t i = 0; while (filters[i].id != LZMA_FILTER_LZMA2 && filters[i].id != LZMA_FILTER_LZMA1) { if (filters[i].id == LZMA_VLI_UNKNOWN) memlimit_too_small(memory_usage); ++i; } // Decrease the dictionary size until we meet the memory // usage limit. First round down to full mebibytes. lzma_options_lzma *opt = filters[i].options; const uint32_t orig_dict_size = opt->dict_size; opt->dict_size &= ~((UINT32_C(1) << 20) - 1); while (true) { // If it is below 1 MiB, auto-adjusting failed. We could be // more sophisticated and scale it down even more, but let's // see if many complain about this version. // // FIXME: Displays the scaled memory usage instead // of the original. if (opt->dict_size < (UINT32_C(1) << 20)) memlimit_too_small(memory_usage); memory_usage = lzma_raw_encoder_memusage(filters); if (memory_usage == UINT64_MAX) message_bug(); // Accept it if it is low enough. if (memory_usage <= memory_limit) break; // Otherwise 1 MiB down and try again. I hope this // isn't too slow method for cases where the original // dict_size is very big. opt->dict_size -= UINT32_C(1) << 20; } // Tell the user that we decreased the dictionary size. message(V_WARNING, _("Adjusted LZMA%c dictionary size " "from %s MiB to %s MiB to not exceed " "the memory usage limit of %s MiB"), filters[i].id == LZMA_FILTER_LZMA2 ? '2' : '1', uint64_to_str(orig_dict_size >> 20, 0), uint64_to_str(opt->dict_size >> 20, 1), uint64_to_str(round_up_to_mib(memory_limit), 2)); return; } /// Return true if the data in in_buf seems to be in the .xz format. static bool is_format_xz(void) { // Specify the magic as hex to be compatible with EBCDIC systems. static const uint8_t magic[6] = { 0xFD, 0x37, 0x7A, 0x58, 0x5A, 0x00 }; return strm.avail_in >= sizeof(magic) && memcmp(in_buf.u8, magic, sizeof(magic)) == 0; } /// Return true if the data in in_buf seems to be in the .lzma format. static bool is_format_lzma(void) { // The .lzma header is 13 bytes. if (strm.avail_in < 13) return false; // Decode the LZMA1 properties. lzma_filter filter = { .id = LZMA_FILTER_LZMA1 }; if (lzma_properties_decode(&filter, NULL, in_buf.u8, 5) != LZMA_OK) return false; // A hack to ditch tons of false positives: We allow only dictionary // sizes that are 2^n or 2^n + 2^(n-1) or UINT32_MAX. LZMA_Alone // created only files with 2^n, but accepts any dictionary size. // If someone complains, this will be reconsidered. lzma_options_lzma *opt = filter.options; const uint32_t dict_size = opt->dict_size; free(opt); if (dict_size != UINT32_MAX) { uint32_t d = dict_size - 1; d |= d >> 2; d |= d >> 3; d |= d >> 4; d |= d >> 8; d |= d >> 16; ++d; if (d != dict_size || dict_size == 0) return false; } // Another hack to ditch false positives: Assume that if the // uncompressed size is known, it must be less than 256 GiB. // Again, if someone complains, this will be reconsidered. uint64_t uncompressed_size = 0; for (size_t i = 0; i < 8; ++i) uncompressed_size |= (uint64_t)(in_buf.u8[5 + i]) << (i * 8); if (uncompressed_size != UINT64_MAX && uncompressed_size > (UINT64_C(1) << 38)) return false; return true; } /// Detect the input file type (for now, this done only when decompressing), /// and initialize an appropriate coder. Return value indicates if a normal /// liblzma-based coder was initialized (CODER_INIT_NORMAL), if passthru /// mode should be used (CODER_INIT_PASSTHRU), or if an error occurred /// (CODER_INIT_ERROR). static enum coder_init_ret coder_init(file_pair *pair) { lzma_ret ret = LZMA_PROG_ERROR; if (opt_mode == MODE_COMPRESS) { switch (opt_format) { case FORMAT_AUTO: // args.c ensures this. assert(0); break; case FORMAT_XZ: #ifdef MYTHREAD_ENABLED if (hardware_threads_get() > 1) ret = lzma_stream_encoder_mt( &strm, &mt_options); else #endif ret = lzma_stream_encoder( &strm, filters, check); break; case FORMAT_LZMA: ret = lzma_alone_encoder(&strm, filters[0].options); break; case FORMAT_RAW: ret = lzma_raw_encoder(&strm, filters); break; } } else { uint32_t flags = 0; // It seems silly to warn about unsupported check if the // check won't be verified anyway due to --ignore-check. if (opt_ignore_check) flags |= LZMA_IGNORE_CHECK; else flags |= LZMA_TELL_UNSUPPORTED_CHECK; if (!opt_single_stream) flags |= LZMA_CONCATENATED; // We abuse FORMAT_AUTO to indicate unknown file format, // for which we may consider passthru mode. enum format_type init_format = FORMAT_AUTO; switch (opt_format) { case FORMAT_AUTO: if (is_format_xz()) init_format = FORMAT_XZ; else if (is_format_lzma()) init_format = FORMAT_LZMA; break; case FORMAT_XZ: if (is_format_xz()) init_format = FORMAT_XZ; break; case FORMAT_LZMA: if (is_format_lzma()) init_format = FORMAT_LZMA; break; case FORMAT_RAW: init_format = FORMAT_RAW; break; } switch (init_format) { case FORMAT_AUTO: // Unknown file format. If --decompress --stdout // --force have been given, then we copy the input // as is to stdout. Checking for MODE_DECOMPRESS // is needed, because we don't want to do use // passthru mode with --test. if (opt_mode == MODE_DECOMPRESS && opt_stdout && opt_force) return CODER_INIT_PASSTHRU; ret = LZMA_FORMAT_ERROR; break; case FORMAT_XZ: ret = lzma_stream_decoder(&strm, hardware_memlimit_get( MODE_DECOMPRESS), flags); break; case FORMAT_LZMA: ret = lzma_alone_decoder(&strm, hardware_memlimit_get( MODE_DECOMPRESS)); break; case FORMAT_RAW: // Memory usage has already been checked in // coder_set_compression_settings(). ret = lzma_raw_decoder(&strm, filters); break; } // Try to decode the headers. This will catch too low // memory usage limit in case it happens in the first // Block of the first Stream, which is where it very // probably will happen if it is going to happen. if (ret == LZMA_OK && init_format != FORMAT_RAW) { strm.next_out = NULL; strm.avail_out = 0; ret = lzma_code(&strm, LZMA_RUN); } } if (ret != LZMA_OK) { message_error("%s: %s", pair->src_name, message_strm(ret)); if (ret == LZMA_MEMLIMIT_ERROR) message_mem_needed(V_ERROR, lzma_memusage(&strm)); return CODER_INIT_ERROR; } return CODER_INIT_NORMAL; } /// Resolve conflicts between opt_block_size and opt_block_list in single /// threaded mode. We want to default to opt_block_list, except when it is /// larger than opt_block_size. If this is the case for the current Block /// at *list_pos, then we break into smaller Blocks. Otherwise advance /// to the next Block in opt_block_list, and break apart if needed. static void split_block(uint64_t *block_remaining, uint64_t *next_block_remaining, size_t *list_pos) { if (*next_block_remaining > 0) { // The Block at *list_pos has previously been split up. assert(hardware_threads_get() == 1); assert(opt_block_size > 0); assert(opt_block_list != NULL); if (*next_block_remaining > opt_block_size) { // We have to split the current Block at *list_pos // into another opt_block_size length Block. *block_remaining = opt_block_size; } else { // This is the last remaining split Block for the // Block at *list_pos. *block_remaining = *next_block_remaining; } *next_block_remaining -= *block_remaining; } else { // The Block at *list_pos has been finished. Go to the next // entry in the list. If the end of the list has been reached, // reuse the size of the last Block. if (opt_block_list[*list_pos + 1] != 0) ++*list_pos; *block_remaining = opt_block_list[*list_pos]; // If in single-threaded mode, split up the Block if needed. // This is not needed in multi-threaded mode because liblzma // will do this due to how threaded encoding works. if (hardware_threads_get() == 1 && opt_block_size > 0 && *block_remaining > opt_block_size) { *next_block_remaining = *block_remaining - opt_block_size; *block_remaining = opt_block_size; } } } /// Compress or decompress using liblzma. static bool coder_normal(file_pair *pair) { // Encoder needs to know when we have given all the input to it. // The decoders need to know it too when we are using // LZMA_CONCATENATED. We need to check for src_eof here, because // the first input chunk has been already read if decompressing, // and that may have been the only chunk we will read. lzma_action action = pair->src_eof ? LZMA_FINISH : LZMA_RUN; lzma_ret ret; // Assume that something goes wrong. bool success = false; // block_remaining indicates how many input bytes to encode before // finishing the current .xz Block. The Block size is set with // --block-size=SIZE and --block-list. They have an effect only when // compressing to the .xz format. If block_remaining == UINT64_MAX, // only a single block is created. uint64_t block_remaining = UINT64_MAX; // next_block_remining for when we are in single-threaded mode and // the Block in --block-list is larger than the --block-size=SIZE. uint64_t next_block_remaining = 0; // Position in opt_block_list. Unused if --block-list wasn't used. size_t list_pos = 0; // Handle --block-size for single-threaded mode and the first step // of --block-list. if (opt_mode == MODE_COMPRESS && opt_format == FORMAT_XZ) { // --block-size doesn't do anything here in threaded mode, // because the threaded encoder will take care of splitting // to fixed-sized Blocks. if (hardware_threads_get() == 1 && opt_block_size > 0) block_remaining = opt_block_size; // If --block-list was used, start with the first size. // // For threaded case, --block-size specifies how big Blocks // the encoder needs to be prepared to create at maximum // and --block-list will simultaneously cause new Blocks // to be started at specified intervals. To keep things // logical, the same is done in single-threaded mode. The // output is still not identical because in single-threaded // mode the size info isn't written into Block Headers. if (opt_block_list != NULL) { if (block_remaining < opt_block_list[list_pos]) { assert(hardware_threads_get() == 1); next_block_remaining = opt_block_list[list_pos] - block_remaining; } else { block_remaining = opt_block_list[list_pos]; } } } strm.next_out = out_buf.u8; strm.avail_out = IO_BUFFER_SIZE; while (!user_abort) { // Fill the input buffer if it is empty and we aren't // flushing or finishing. if (strm.avail_in == 0 && action == LZMA_RUN) { strm.next_in = in_buf.u8; strm.avail_in = io_read(pair, &in_buf, my_min(block_remaining, IO_BUFFER_SIZE)); if (strm.avail_in == SIZE_MAX) break; if (pair->src_eof) { action = LZMA_FINISH; } else if (block_remaining != UINT64_MAX) { // Start a new Block after every // opt_block_size bytes of input. block_remaining -= strm.avail_in; if (block_remaining == 0) action = LZMA_FULL_BARRIER; } if (action == LZMA_RUN && flush_needed) action = LZMA_SYNC_FLUSH; } // Let liblzma do the actual work. ret = lzma_code(&strm, action); // Write out if the output buffer became full. if (strm.avail_out == 0) { if (opt_mode != MODE_TEST && io_write(pair, &out_buf, IO_BUFFER_SIZE - strm.avail_out)) break; strm.next_out = out_buf.u8; strm.avail_out = IO_BUFFER_SIZE; } if (ret == LZMA_STREAM_END && (action == LZMA_SYNC_FLUSH || action == LZMA_FULL_BARRIER)) { if (action == LZMA_SYNC_FLUSH) { // Flushing completed. Write the pending data // out immediatelly so that the reading side // can decompress everything compressed so far. if (io_write(pair, &out_buf, IO_BUFFER_SIZE - strm.avail_out)) break; strm.next_out = out_buf.u8; strm.avail_out = IO_BUFFER_SIZE; // Set the time of the most recent flushing. mytime_set_flush_time(); } else { // Start a new Block after LZMA_FULL_BARRIER. if (opt_block_list == NULL) { assert(hardware_threads_get() == 1); assert(opt_block_size > 0); block_remaining = opt_block_size; } else { split_block(&block_remaining, &next_block_remaining, &list_pos); } } // Start a new Block after LZMA_FULL_FLUSH or continue // the same block after LZMA_SYNC_FLUSH. action = LZMA_RUN; } else if (ret != LZMA_OK) { // Determine if the return value indicates that we // won't continue coding. const bool stop = ret != LZMA_NO_CHECK && ret != LZMA_UNSUPPORTED_CHECK; if (stop) { // Write the remaining bytes even if something // went wrong, because that way the user gets // as much data as possible, which can be good // when trying to get at least some useful // data out of damaged files. if (opt_mode != MODE_TEST && io_write(pair, &out_buf, IO_BUFFER_SIZE - strm.avail_out)) break; } if (ret == LZMA_STREAM_END) { if (opt_single_stream) { io_fix_src_pos(pair, strm.avail_in); success = true; break; } // Check that there is no trailing garbage. // This is needed for LZMA_Alone and raw // streams. if (strm.avail_in == 0 && !pair->src_eof) { // Try reading one more byte. // Hopefully we don't get any more // input, and thus pair->src_eof // becomes true. strm.avail_in = io_read( pair, &in_buf, 1); if (strm.avail_in == SIZE_MAX) break; assert(strm.avail_in == 0 || strm.avail_in == 1); } if (strm.avail_in == 0) { assert(pair->src_eof); success = true; break; } // We hadn't reached the end of the file. ret = LZMA_DATA_ERROR; assert(stop); } // If we get here and stop is true, something went // wrong and we print an error. Otherwise it's just // a warning and coding can continue. if (stop) { message_error("%s: %s", pair->src_name, message_strm(ret)); } else { message_warning("%s: %s", pair->src_name, message_strm(ret)); // When compressing, all possible errors set // stop to true. assert(opt_mode != MODE_COMPRESS); } if (ret == LZMA_MEMLIMIT_ERROR) { // Display how much memory it would have // actually needed. message_mem_needed(V_ERROR, lzma_memusage(&strm)); } if (stop) break; } // Show progress information under certain conditions. message_progress_update(); } return success; } /// Copy from input file to output file without processing the data in any /// way. This is used only when trying to decompress unrecognized files /// with --decompress --stdout --force, so the output is always stdout. static bool coder_passthru(file_pair *pair) { while (strm.avail_in != 0) { if (user_abort) return false; if (io_write(pair, &in_buf, strm.avail_in)) return false; strm.total_in += strm.avail_in; strm.total_out = strm.total_in; message_progress_update(); strm.avail_in = io_read(pair, &in_buf, IO_BUFFER_SIZE); if (strm.avail_in == SIZE_MAX) return false; } return true; } extern void coder_run(const char *filename) { // Set and possibly print the filename for the progress message. message_filename(filename); // Try to open the input file. file_pair *pair = io_open_src(filename); if (pair == NULL) return; // Assume that something goes wrong. bool success = false; if (opt_mode == MODE_COMPRESS) { strm.next_in = NULL; strm.avail_in = 0; } else { // Read the first chunk of input data. This is needed // to detect the input file type. strm.next_in = in_buf.u8; strm.avail_in = io_read(pair, &in_buf, IO_BUFFER_SIZE); } if (strm.avail_in != SIZE_MAX) { // Initialize the coder. This will detect the file format // and, in decompression or testing mode, check the memory // usage of the first Block too. This way we don't try to // open the destination file if we see that coding wouldn't // work at all anyway. This also avoids deleting the old // "target" file if --force was used. const enum coder_init_ret init_ret = coder_init(pair); if (init_ret != CODER_INIT_ERROR && !user_abort) { // Don't open the destination file when --test // is used. if (opt_mode == MODE_TEST || !io_open_dest(pair)) { // Remember the current time. It is needed // for progress indicator and for timed // flushing. mytime_set_start_time(); // Initialize the progress indicator. const uint64_t in_size = pair->src_st.st_size <= 0 ? 0 : pair->src_st.st_size; message_progress_start(&strm, in_size); // Do the actual coding or passthru. if (init_ret == CODER_INIT_NORMAL) success = coder_normal(pair); else success = coder_passthru(pair); message_progress_end(success); } } } // Close the file pair. It needs to know if coding was successful to // know if the source or target file should be unlinked. io_close(pair, success); return; } #ifndef NDEBUG extern void coder_free(void) { lzma_end(&strm); return; } #endif