// -*- C++ -*- Allocate exception objects. // Copyright (C) 2001-2019 Free Software Foundation, Inc. // // This file is part of GCC. // // GCC is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3, or (at your option) // any later version. // // GCC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . // This is derived from the C++ ABI for IA-64. Where we diverge // for cross-architecture compatibility are noted with "@@@". #include #include #if _GLIBCXX_HOSTED #include #endif #include #include #include "unwind-cxx.h" #include #include #if _GLIBCXX_HOSTED using std::free; using std::malloc; using std::memset; #else // In a freestanding environment, these functions may not be available // -- but for now, we assume that they are. extern "C" void *malloc (std::size_t); extern "C" void free(void *); extern "C" void *memset (void *, int, std::size_t); #endif using namespace __cxxabiv1; // ??? How to control these parameters. // Guess from the size of basic types how large a buffer is reasonable. // Note that the basic c++ exception header has 13 pointers and 2 ints, // so on a system with PSImode pointers we're talking about 56 bytes // just for overhead. #if INT_MAX == 32767 # define EMERGENCY_OBJ_SIZE 128 # define EMERGENCY_OBJ_COUNT 16 #elif !defined (_GLIBCXX_LLP64) && LONG_MAX == 2147483647 # define EMERGENCY_OBJ_SIZE 512 # define EMERGENCY_OBJ_COUNT 32 #else # define EMERGENCY_OBJ_SIZE 1024 # define EMERGENCY_OBJ_COUNT 64 #endif #ifndef __GTHREADS # undef EMERGENCY_OBJ_COUNT # define EMERGENCY_OBJ_COUNT 4 #endif namespace __gnu_cxx { void __freeres(); } namespace { // A fixed-size heap, variable size object allocator class pool { public: pool(); _GLIBCXX_NODISCARD void *allocate (std::size_t); void free (void *); bool in_pool (void *); private: struct free_entry { std::size_t size; free_entry *next; }; struct allocated_entry { std::size_t size; char data[] __attribute__((aligned)); }; // A single mutex controlling emergency allocations. __gnu_cxx::__mutex emergency_mutex; // The free-list free_entry *first_free_entry; // The arena itself - we need to keep track of these only // to implement in_pool. char *arena; std::size_t arena_size; friend void __gnu_cxx::__freeres(); }; pool::pool() { // Allocate the arena - we could add a GLIBCXX_EH_ARENA_SIZE environment // to make this tunable. arena_size = (EMERGENCY_OBJ_SIZE * EMERGENCY_OBJ_COUNT + EMERGENCY_OBJ_COUNT * sizeof (__cxa_dependent_exception)); arena = (char *)malloc (arena_size); if (!arena) { // If the allocation failed go without an emergency pool. arena_size = 0; first_free_entry = NULL; return; } // Populate the free-list with a single entry covering the whole arena first_free_entry = reinterpret_cast (arena); new (first_free_entry) free_entry; first_free_entry->size = arena_size; first_free_entry->next = NULL; } void *pool::allocate (std::size_t size) { __gnu_cxx::__scoped_lock sentry(emergency_mutex); // We need an additional size_t member plus the padding to // ensure proper alignment of data. size += offsetof (allocated_entry, data); // And we need to at least hand out objects of the size of // a freelist entry. if (size < sizeof (free_entry)) size = sizeof (free_entry); // And we need to align objects we hand out to the maximum // alignment required on the target (this really aligns the // tail which will become a new freelist entry). size = ((size + __alignof__ (allocated_entry::data) - 1) & ~(__alignof__ (allocated_entry::data) - 1)); // Search for an entry of proper size on the freelist. free_entry **e; for (e = &first_free_entry; *e && (*e)->size < size; e = &(*e)->next) ; if (!*e) return NULL; allocated_entry *x; if ((*e)->size - size >= sizeof (free_entry)) { // Split block if it is too large. free_entry *f = reinterpret_cast (reinterpret_cast (*e) + size); std::size_t sz = (*e)->size; free_entry *next = (*e)->next; new (f) free_entry; f->next = next; f->size = sz - size; x = reinterpret_cast (*e); new (x) allocated_entry; x->size = size; *e = f; } else { // Exact size match or too small overhead for a free entry. std::size_t sz = (*e)->size; free_entry *next = (*e)->next; x = reinterpret_cast (*e); new (x) allocated_entry; x->size = sz; *e = next; } return &x->data; } void pool::free (void *data) { __gnu_cxx::__scoped_lock sentry(emergency_mutex); allocated_entry *e = reinterpret_cast (reinterpret_cast (data) - offsetof (allocated_entry, data)); std::size_t sz = e->size; if (!first_free_entry || (reinterpret_cast (e) + sz < reinterpret_cast (first_free_entry))) { // If the free list is empty or the entry is before the // first element and cannot be merged with it add it as // the first free entry. free_entry *f = reinterpret_cast (e); new (f) free_entry; f->size = sz; f->next = first_free_entry; first_free_entry = f; } else if (reinterpret_cast (e) + sz == reinterpret_cast (first_free_entry)) { // Check if we can merge with the first free entry being right // after us. free_entry *f = reinterpret_cast (e); new (f) free_entry; f->size = sz + first_free_entry->size; f->next = first_free_entry->next; first_free_entry = f; } else { // Else search for a free item we can merge with at its end. free_entry **fe; for (fe = &first_free_entry; (*fe)->next && (reinterpret_cast ((*fe)->next) > reinterpret_cast (e) + sz); fe = &(*fe)->next) ; // If we can merge the next block into us do so and continue // with the cases below. if (reinterpret_cast (e) + sz == reinterpret_cast ((*fe)->next)) { sz += (*fe)->next->size; (*fe)->next = (*fe)->next->next; } if (reinterpret_cast (*fe) + (*fe)->size == reinterpret_cast (e)) // Merge with the freelist entry. (*fe)->size += sz; else { // Else put it after it which keeps the freelist sorted. free_entry *f = reinterpret_cast (e); new (f) free_entry; f->size = sz; f->next = (*fe)->next; (*fe)->next = f; } } } bool pool::in_pool (void *ptr) { char *p = reinterpret_cast (ptr); return (p > arena && p < arena + arena_size); } pool emergency_pool; } namespace __gnu_cxx { void __freeres() { if (emergency_pool.arena) { ::free(emergency_pool.arena); emergency_pool.arena = 0; } } } extern "C" void * __cxxabiv1::__cxa_allocate_exception(std::size_t thrown_size) _GLIBCXX_NOTHROW { void *ret; thrown_size += sizeof (__cxa_refcounted_exception); ret = malloc (thrown_size); if (!ret) ret = emergency_pool.allocate (thrown_size); if (!ret) std::terminate (); memset (ret, 0, sizeof (__cxa_refcounted_exception)); return (void *)((char *)ret + sizeof (__cxa_refcounted_exception)); } extern "C" void __cxxabiv1::__cxa_free_exception(void *vptr) _GLIBCXX_NOTHROW { char *ptr = (char *) vptr - sizeof (__cxa_refcounted_exception); if (emergency_pool.in_pool (ptr)) emergency_pool.free (ptr); else free (ptr); } extern "C" __cxa_dependent_exception* __cxxabiv1::__cxa_allocate_dependent_exception() _GLIBCXX_NOTHROW { __cxa_dependent_exception *ret; ret = static_cast<__cxa_dependent_exception*> (malloc (sizeof (__cxa_dependent_exception))); if (!ret) ret = static_cast <__cxa_dependent_exception*> (emergency_pool.allocate (sizeof (__cxa_dependent_exception))); if (!ret) std::terminate (); memset (ret, 0, sizeof (__cxa_dependent_exception)); return ret; } extern "C" void __cxxabiv1::__cxa_free_dependent_exception (__cxa_dependent_exception *vptr) _GLIBCXX_NOTHROW { if (emergency_pool.in_pool (vptr)) emergency_pool.free (vptr); else free (vptr); }